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4 Fundamentals of 
Continuum 
Thermomechanics 

 
In this Chapter, the laws of thermodynamics are reviewed and formulated for a 
continuum.  The classical theory of thermodynamics, which is concerned with simple 
compressible systems, is discussed in sections 4.1-4.3, wherein are discussed the concepts 
of entropy, entropy production and entropy supply, the second law, the notions of 
reversibility and irreversibility, the thermodynamic potential functions (internal energy, 
enthalpy and the Gibbs and Helmholtz free energies).  Continuum thermomechanics is 
discussed in section 4.4. 
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4.1 Classical Thermodynamics: The First Law 
 
As an introduction to the thermomechanics of continua, in this section particularly simple 
materials undergoing simple deformation and/or heat-transfer processes are considered. 
 
 
4.1.1 Properties and States 
 
First, here is some essential terminology used to describe thermodynamic processes. 
 
A property of a substance is a macroscopic characteristic to which a numerical value can 
be assigned at a given time.  Thus, for example, the mass, volume and energy of a 
material, or the stress acting on a material, are properties.  Work, on the other hand, is not 
a property, since a material does not “have a certain amount of work” (see the section 
which follows). 
 
The state of a material is the condition of the material as described by its properties.  For 
example a material which has properties volume 1V  and temperature 1  could be said to 

be in state ‘1’ whereas if at some later time it has different properties 2V  and 2 , it could 
be said to be in a different state, state ‘2’. 
 
 
4.1.2 Work and Path Dependence 
 
For the present purposes, a system can be defined to be a certain amount of matter which 
has fixed or movable boundaries.  The state of a system can then be defined by assigning 
to it properties such as volume, pressure and so on.  As will be seen, there are then two 
ways in which the state of the system can be changed, by interactions with its 
surroundings through heat or through work.  The notion of heat, although familiar to us, 
will be defined precisely when the first law of thermodynamics is introduced below.  
First, consider the system shown below in Fig. 4.1.1, which consists of a block attached to 
an elastic spring, sliding over a rough surface. A force is applied to the “system” (denoted 
by the dotted line). 
 

 
 

Figure 4.1.1: a spring/block system 
 
The current state of the system can be described by the property x, the extension of the 
spring from its equilibrium position (and its velocity).  However, the work done in 
moving the system from a previous state to the current state is unknown, since the block 
may have moved directly from its initial position to its current position, or it may have 
moved over and back many times before reaching the current position.  Therefore the 
work done is path dependent.  There are many different amounts of work which can be 
carried out to move a system from one state to another. 

F
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4.1.3 Thermal Equilibrium and Adiabatic Processes 
 
Before getting to the first law, it is helpful to consider the notions of thermal 
equilibrium and adiabatic processes. 
 
Thermal Equilibrium 
 
Consider the following experiment: two blocks of copper, one of which our senses tell us 
is “warmer” than the other, are brought into contact and isolated from their surroundings, 
Fig. 4.2.1a.  A number of observations would be made, for example: 
(1) the volume of the warmer body decreases with time whereas the volume of the 

colder body increases, until no further changes take place and the bodies feel 
equally warm 

(2) the electrical resistance of the warmer block decreases with time whereas that of the 
colder block increases, until the electrical resistances would become constant also. 

When these and all such changes in observable properties cease, the interaction is at an 
end.  One says that the two blocks are then in thermal equilibrium.  In everyday language, 
one would say that the two blocks have the same temperature1. 
 

 
 

Figure 4.2.1: two blocks of copper brought into contact; (a) no insulating wall, (b) 
insulating wall 

 
Adiabatic Conditions 
 
Suppose now that, before the blocks are brought together, an insulating wall is put in 
place to separate them, Fig. 4.2.1b.  By this is meant that the volume, electrical resistance, 
etc. of one block does not affect those of the other block.  Again, in everyday language, 
one would simply say that the temperature of one block does not affect the temperature of 
the other.  The term adiabatic is used to describe this situation. 
 
 
 
 

                                                 
1 formally, temperature is defined through the zeroth law of thermodynamics, which states that if two 
systems are separately in thermal equilibrium with a third system, then they must be in thermal equilibrium 
with one another.  This statement is tacitly assumed in every measurement of temperature – the third system 
being the thermometer 

(a)

insulating 
wall 

(b)
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4.1.4 The First Law of Thermodynamics 
 
The Experiments of Joule 
 
James Joule carried out some ingenious experiments into the nature of work and heat 
transfer in materials in the 1840s.  In his most famous experiment, Joule filled a container 
with a fluid and used a rotating paddle wheel, driven by falling weights, to stir the water. 
The container was thermally insulated and so the process was adiabatic. Joule measured 
the consequent rise in temperature of the fluid and noted that this change in the fluid’s 
properties was due to the work done by the falling weights. 
 
Further experiments were carried out in which raising the temperature of the thermally 
insulated fluid was induced by carrying out the necessary work in different ways, for 
example using electrical means. In all cases, the work required to raise the temperature by 
a fixed amount was the same. 
 
The series of experiments showed that if a material is thermally insulated, there is only 
one amount of work which brings the material from one state to a second state. If one 
knows the first state and the second state, one knows the amount of work required to 
effect the change in state – the work is path independent. 
 
It took many years for investigators to absorb the meaning of this experimental result; it 
was eventually accepted that there must exist a function U, a property of the system, such 
that 
 

12 UUUW        (adiabatic process)                (4.1.1) 
 
U is the internal energy, and the difference in internal energy between state 2 and state 1 
is defined as equal to the work done in going from 1 to 2 by adiabatic means. 
 
In the case of the stirred fluid, the increase in internal energy is due to the more rapidly 
moving fluid particles, that is, is equivalent to the increase in kinetic energy of the fluid 
particles. 
 
Consider again the elastic spring system of Fig. 4.1.1, but now without the sliding over a 
rough surface, and completely thermally insulated.  The work done now depends only on 
the current state (it equals 2 21 1

02 2kx kx , where k is the spring constant and 0x  is the 

equilibrium position).  The internal energy of the system is seen to be in this case 
equivalent to the elastic potential energy in the spring. 
 
The First Law 
 
One can imagine now a careful experiment in which a material is thermally insulated 
from its surroundings and deformed through the work of a set of forces.  The material can 
be deformed into different states, Fig. 4.1.3.  The internal energy U will in general be 
different in each state.  U could be measured by carefully recording the work done on the 
material to reach a given state. 
 



Section 4.1 

Solid Mechanics Part III                                                                                Kelly 392

 
 

Figure 4.1.3: a thermally insulated material in three different states 
 
Suppose that the internal energy of a material is known at various different states, through 
the conduction of the aforementioned experiment, in particular one knows the internal 
energy for the material at two given states, 1 and 2.  Relax now the condition that the 
changes are adiabatic.  What this means is that if one now brings the material into contact 
with another body, the properties of the material can be affected.  Work is again done to 
take the material from state 1 to state 2 but it will now be found that, in general,  
 

12 UUUW          (4.1.2) 
 
The difference between U  and W is defined as a measure of the heat Q which has 
entered the system in the change.  Thus 
 

UQW       First Law of Thermodynamics    (4.1.3) 
 
This is the first law of thermodynamics.  In words, the change in the internal energy is 
the sum of the work done plus the heat supplied. 
 
Note that the concept of heat Q (and internal energy) is introduced and defined with the 
first law.  Like work, heat is a form of energy transfer; a body does not contain heat.  
Work is any means of changing the energy of a system other than heat. 
 
Sign Convention for Work and Energy 
 
The following sign convention will be used2 
  

0Q   –   heat enters the system      
 0Q  – heat leaves the system                   (4.1.4) 
 0W  – work done on the system     
 0W  – work done by the system     

 
 
 

                                                 
2 many authors use the exact opposite sign convention for work as used here 

State 1 

1U  
State 2 

2U  
State 3 

3U  
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Other types of Energy 
 
When there are other energies involved, the first law must be amended.  For a material 
moving with a certain velocity, one must also consider its kinetic energy, and the first law 
reads 
 

KUQW                        (4.1.5) 
 
Other types of energy can be incorporated, for example gravitational potential energy and 
chemical energy3.  All the different types of energy are often denoted simply by E, so the 
first law in general reads EQW  . 
 
Inside the Black Box 
 
In this continuum treatment of thermodynamics (or phenomenological 
thermodynamics), it is not necessary to look inside and consider the billions of 
molecules inside the “black box” of a system.  However, it is helpful to think of the 
molecules of a material as having certain micro-velocities and it is the mean velocity of 
these micro-velocities which manifests itself as the macroscopic velocity property, and 
the statistical fluctuations of the micro-velocities from the mean velocity are assumed to 
cancel out, Fig. 4.1.4.   
 
The micro-velocity fluctuations give rise to an internal kinetic energy which manifests 
itself as the macroscopic temperature, as in the stirred fluid mentioned above.  The 
interaction between the elementary particles and the surroundings of the element causes 
energy to be transferred to the surroundings.  This is the heat flow through the boundary 
of the system.  This energy exchange can occur even when the shape of the element does 
not change, whereas a change in potential energy implies a deformation which will induce 
a re-arrangement of the molecules and change in shape or volume of the system. 
 

 
 

Figure 4.1.4: a system moving with velocity v 
 
The property of pressure or stress of the system is by definition determined by the forces 
exerted by the elementary particles around the boundary.  The fluctuations and micro-
movement of the elementary particles will cause stress fluctuations but again these are 
assumed to cancel out. 
 
 

                                                 
3 a potential energy which can be accessed when molecular bonds are broken  

v
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4.1.5 Simple Compressible Systems 
 
In order to demonstrate the meaning and use of the first law with examples and simple 
calculations, only simple systems will be considered.  A simple system is one where 
there is only one possible work interaction.  The classic example of a simple compressible 
system is that of a substance contained within a piston-cylinder apparatus, Fig. 4.1.5.  The 
state of the material can be changed either by heat transfer or by the application of work, 
and the only work interaction possible is the application of a force to the piston head, 
compressing or expanding the material.  Any effects due to magnetic or electrical 
interactions, or due to motion or gravity, are ignored. 
 

 
 

Figure 4.1.5: A simple piston-cylinder system 
 
A pure substance is one which has a uniform and invariable chemical composition.  In 
theory this could include different phases of the same substance (e.g. water and steam for 
H2O).   
 
In what follows, only pure substances in the context of simple compressible systems will 
be considered. 
 
Work 
 
If p is the pressure at the piston face, and dV  is a small change in volume of the material, 
Fig. 4.1.5, then the work done in compressing/expanding the material is 
 

dVpW  ,     (4.1.6) 
 
the minus sign because a positive work is done when the volume gets smaller.  The total 
work done during a compression/expansion of the material is then 
 

  22

11

,

,

Vp

Vp
dVpWW              (4.1.7) 
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The symbol   is used here to indicate that the small amount of work W  is not a true 
differential4; it cannot be integrated to a function which is evaluated at only the initial and 

final states, 
2 2

1 1

,

2 2 1 1,
( , ) ( , )

p V

p V
W dW W p V W p V   , since the work done is process/path.  

To illustrate this path dependence, consider the Vp   graph in Fig. 4.1.6, which shows 

three different process paths between states 1 ( 11,Vp ) and 2 ( 22 ,Vp ).  For path ABC, the 

work done is )( 122 VVp  .  For path CBA  , the work done is )( 121 VVp  .  The work for 
the third, curved, path requires an integration along AC and will in general be different 
from both the other results. 
 

 
 

Figure 4.1.6: a p-V diagram 
 
The first law states that QWdU    which can now be re-written as 
 

QpdVdU      First Law for a Simple Compressible System   (4.1.8) 
 
 
4.1.6 Quasi-Static Processes 
 
A system is said to be in equilibrium when it experiences no change over time – it is in a 
steady state.  Full thermodynamic equilibrium of a system requires thermal 
equilibrium with any surroundings and also mechanical equilibrium5. 
 
Much of the theory developed here requires that the system be in a certain state with 
certain properties.  If a property such as temperature is varying throughout the material, 
one cannot easily speak of its “state”.  Thus when a material is undergoing some process, 
for example it is being deformed or heated, it is often necessary to assume that it is a 
quasi-static (or quasi-equilibrium) process.  This means that the process takes place so 
slowly that the rate of change of the process is slow relative to the time taken for the 
properties to reach equilibrium.  For example, if one heats water in the piston-cylinder 
arrangement of Fig. 4.1.5 by putting it directly over a hot flame, the water near the base 
will heat up first and cause convection currents and the water will not be anywhere near 
an equilibrium state.  On the other hand, one could imagine heating the water extremely 

                                                 
4 but not to be confused with the use of this symbol to represent a variation, as in the context of the principle 
of virtual work 
5 and also chemical equilibrium, where there are no net reactions taking place 

2p

1p
A

CB

p

V

B

1V 2V
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slowly with a low flame, so that at any time instant the water temperature is very nearly 
constant throughout. 
 
To examine what this might mean in the case of the work performed, consider Fig. 4.1.7, 
which shows the system pressure p and the external pressure extp  – the pressure exerted 

by the surroundings.  Assuming thermal equilibrium, if extpp   then there is full 

equilibrium.  If, however, there is an appreciable difference between the two, for example 
if a large external pressure is suddenly applied, the piston head will depress rapidly and 
pressure will not remain uniform throughout the system.  However, if the pressures differ 
by a small amount dp , the work done is 
 

  dVpdVdpdVpdVdppdVpW extextext           (4.1.9) 

 
provided dp  is extremely small.  The smaller dp , the closer the system will be to 
mechanical equilibrium.  As with the heat transfer, this implies that quasi-equilibrium is 
maintained provided the piston is moved extremely slowly by incrementally increasing 
the pressure by very small amounts.  (It is often suggested that this might be achieved by 
repeatedly placing individual grains of sand on the piston head.) 
 

 
 

Figure 4.1.7: pressures exerted on a piston head 
 
Unless otherwise stated, it will be assumed that the material at any instance is in quasi-
equilibrium.  If the system is not in equilibrium, Eqn. 4.1.8, QpdVdU  , does not 
make much sense, and one would have to use the more general version QWdU   . 
 
Example 
 
A gas is contained in a rigid thermally insulated container.  It is then allowed to expand 
into a similar container initially evacuated, Fig. 4.1.8.  There is no heat transfer and so 

0Q .  Since a vacuum provides no resistance to an expanding gas, there is no pressure 
and hence no work done.  Therefore there is no change in the internal energy of the gas.  
This is not a quasi-static process.  
 

 
 

Figure 4.1.8: a thermally insulated gas expanding in an evacuated container 
■ 

p

extp
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Example 
 
Consider the cylinder arrangement of Fig. 4.1.9, which shows a gas contained by a 
weight.  The gas is heated and this causes the weight to rise.  The pressure is constant and 
so the work done is  12 VVpVp  .  This example shows a system taking heat as 
input and performing work as output, with no necessary internal energy change. 
 
 

 
 

Figure 4.1.9: a heated gas causing a weight to move 
■ 

 
The opposite process, whereby work is converted purely into heat is called dissipation 
(for example, as can occur in a frictional brake). 
 
 
4.1.7 State Variables and State Functions 
 
Now a general guide known as the state principle says that there is one independent 
property for each way a system’s energy can be varied independently.  For a simple 
compressible system, there are two ways of varying the energy and so the material has 
two independent properties6.  One can take any two of, for example, the temperature7 
 , pressure p, volume V or internal energy U.  The two chosen independent properties are 
the state variables of the system.  The state of the system is completely described by 
these state variables.  
 
Other properties of the system can be expressed as state functions of the state variables.  
For example, suppose that one takes the temperature and volume to be the state variables.  
Then the relations 
 

   VUUVpp ,,,                        (4.1.10) 
 

                                                 
6 this is not always the case; it should be emphasised that the number of state variables needed to 
completely characterise a material undergoing a certain process is, in the final analysis, determined from 
experiment 
7 the symbol   denotes the absolute temperature, with 0  

p

weight 

p

weight 
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are state functions for the pressure and internal energy.  Equations involving the various 
properties of a system, as in 4.1.10, are also called equations of state.  The first of these, 
relating force variables (in this simple case, the pressure p) to kinematic variables (in this 
case, the volume V) and temperature, is called a thermodynamic (or thermal) equation 
of state.  The second, relating the internal energy to a thermal variable (here temperature) 
and a kinematic variable, is called a caloric equation of state. 
 
Different sets of state variables may be chosen.  For example, taking p and   to be the 
state variables, the state functions would be 
 

   , , ,V V p U U p                         (4.1.11) 

 
A key feature of a state function is that its value is determined from the values of the state 
variables; its value does not depend on the particular path taken to reach the current state.  
For example, the internal energy is a state function (by its own definition); if one chooses 
the state variables to be ( , )p V , the change in internal energy between states ‘1’ and ‘2’ is 
(compare with Eqn. 4.1.7) 
 

   2 2

1 1

,

2 2 1 1,
, ,

p V

p V
U dU U p V U p V                 (4.1.12) 

 
The value of U  depends only on the values of the state variables, in other words its 
value is the same no matter what path is taken between A and C in Fig. 4.1.6. 
 

( , )U U p V  defines a surface U in p V  space.  The total differential of U is then8 
 

pV

U U
dU dp dV

p V

          
             (4.1.13) 

 
Although the partial differentiation here means differentiation with respect to one variable 
only, it is conventional in classical thermodynamics to include a subscript to explicitly 
indicate this, as here – the subscript emphasises the variable which is held constant.  This 
notation helps avoid confusion when the set of state variables being used is changed 
during an analysis. 
 
These partial derivatives are themselves state functions; since the function U is known for 
all ( , )p V , so are its slopes. 
 
 
4.1.8 Specific Properties 
 
Specific properties are properties per unit mass.  They are usually denoted by lower case 
letters.  For example, the specific volume (reciprocal of the density) and specific internal 
energy are 
 

                                                 
8  
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m

U
u

m

V
v  ,               (4.1.14) 

 
where m is the mass of the system.  The properties V and U are extensive properties, 
meaning they depend on the amount of substance in the system.  The specific properties 
on the other hand are intensive properties, meaning they do not depend on the amount of 
substance.  Other intensive properties are the temperature   and pressure p. 
 
One can also express the heat and work as per unit mass: 
 

m

W
w

m

Q
q

  ,                                       (4.1.15) 

 
 
4.1.9 Heat Capacity 
 
Specific Heat and the Enthalpy 
 
The heat capacity is defined as the amount of heat required to raise the system by one 
unit of temperature, so the higher the heat capacity, the more the heat required to increase 
the temperature. For example, water has a very high heat capacity, so it requires a lot of 
heating to increase its temperature. By the same token, it can give out a lot of heat 
without dropping in temperature too quickly (hence its use in hot water bottles).  
 
The amount of heat required to raise the temperature by a fixed amount is path-
dependent, depending as it does on the amount of accompanying work carried out, so the 
heat capacity as defined above is ambiguous. To remove this ambiguity, one can specify 
the path taken during which the heat is added; the two common paths chosen are those at 
constant volume and at constant pressure. 
 
From Eqn. 4.1.8, the heat capacity at constant volume is, by definition,  
 

VV
V

U

d

Q
C 





















             (4.1.16) 

 
In this case, all the supplied thermal energy goes into raising the temperature of the body.  
Note that VC  is a state function; this is clear from the fact that there is no path 

dependence involved in its evaluation. 
 
The question arises: what is the volume which is held “constant”?   Although VC  will in 

general depend on the V chosen, this dependence is very weak for many materials; a 
material is usually assigned a value for VC  without reference to the volume at which it is 

measured. 
 
The heat capacity at constant pressure is by definition 
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ppp
p

HV
p

U

d

Q
C 




































             (4.1.17) 

 
where H is the enthalpy, defined by 
 

pVUH              (4.1.18) 
 
In this case, some of the thermal energy is converted into work, and so Vp CC  . 

 
The enthalpy is a state function, since U, p and V are (either state functions or state 
variables).  As with  VV UC  / , the heat capacity  pp HC  /  is also state 

function. 
 
Note that, for an incompressible material, /V pC C U      and there is no ambiguity 

as to its meaning.  Most fluids are incompressible, or nearly so, and solids are also often 
approximated as incompressible for heat capacity measurements.  The case of gases will 
be discussed below.  
 
Internal Energy Measurements 
 
Suppose now that the heat capacity at constant volume has been carefully measured over 
a given temperature range, by recording the heat required to effect increments in 
temperature.  The internal energy changes within that range can then be found from 
 






dCUUU V
2

1

12  (constant volume)        (4.1.18) 

 
Although this measurement technique requires constant volume processes, since internal 
energy is a property the results apply to all processes. 
 
Some values for the specific internal energy and enthalpy of steam for a range of 
temperatures, pressures and specific volumes are given in Table 4.1.1 below.  The 
reference state for internal energy (where u is chosen to be zero) is for saturated water at 
0.01oC.  The corresponding reference state for the enthalpy is obtained from 4.1.179. 
 

   ( C0 ) v    (m3/kg) u    (kJ/kg) h    (kJ/kg) 
120 1.793 2537.3 2716.6 
200 2.172 2658.1 2875.3 
280 2.546 2779.6 3034.2 
360 2.917 2904.2 3195.9 

Table 4.1.1a: Properties for steam at pressure MPa1.0p  
 
 
 
 

                                                 
9 note that u and h can take on negative values, depending on the reference state chosen 
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MPa)(p  v    (m3/kg) u    (kJ/kg) h    (kJ/kg) 
0.035 6.228 2660.4 2878.4 
0.100 2.172 2658.1 2875.3 
0.300 0.716 2650.7 2865.5 
0.500 0.425 2642.9 2855.4 

Table 4.1.1b: Properties for steam at temperature C2000  
 
 
4.1.10 The Ideal Gas 
 
A thermally perfect gas is one for which the thermal equation of state is 
 

mRpV      or    Rpv                         (4.1.19) 
 
where R is the universal gas constant.  Further, an ideal gas is a thermally perfect gas 
whose internal energy depends on the temperature only, that is, its caloric equation of 
state is of the form 
 

)(UU           (4.1.20) 
 
To justify this expression from a physical point of view, consider a gas at the microscopic 
level.  Internal energy and pressure are related through intermolecular forces.  If the 
pressure is very low, the internal energy is no longer affected by these forces, since the 
molecules are so far apart, but only by their kinetic energy of motion, i.e. the temperature.  
Moderate changes in volume will not bring the molecules of gas close enough together to 
alter this sole dependence on temperature. 
 
When the internal energy is a function of   and V, one has 
 

dV
V

U
dCdV

V

U
d

U
dU V

V 


































        (4.1.21) 

 
Thus for an ideal gas 
 

dCdU V .            (4.1.22) 

 
Example 
 
Consider an ideal gas undergoing a volume change under isothermal, i.e. constant 
temperature, conditions.  From 4.1.19, the quantity 2211 VpVppV   is a constant 

mR .  This constrains the process to lie on one particular path in a Vp   diagram.  
Also, from 4.1.22, 0dU  and so WQ   .  If an ideal gas expands at constant 
temperature then the heat input exactly equals the work done against an incrementally 
changing external pressure. 

■ 
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Consider now a process involving work and heat transfer.  One has pdVdCQ V    

and the total heat input is 
 

 
22

11

2

1

,

,

)(
Vp

Vp

V pdVdCQQ




                  (4.1.23) 

 
The second integral here clearly depends on the exact combination of pressure and 
volume during the process, so the heat input Q is path dependent, as expected.  However, 
consider the following: 
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                 (4.1.24) 

 
The quantity on the right is now path independent.  In fact, for the simple case where VC  

is independent of  , a good approximation for many “near-ideal” gases, one has 
 

   1212 /ln/ln VVmRC
Q

V  



               (4.1.25) 

 
This expression means that, for an ideal gas undergoing a quasi-static process, although 

the quantity Q depends on the process,  /Q  does not and so is a property.  This 

property is called the entropy of the gas.  
 
 
4.1.11 Problems 
 
1. A gas is contained in a thermally insulated cylinder.  It is very rapidly compressed so 

that its temperature rises sharply.  Has there been a transfer of heat to the gas?  Has 
work been done?  Is the process quasi-static? 

 
2. A gas expands from an initial state where kPa5001 p  and 3

1 m1.0V  to a final 

state where kPa1002 p .  The relationship between pressure and volume during the 
particular process is kpV  , a constant.  Sketch the process on a Vp   diagram and 
determine the work, in kJ.  Interpret the + or – sign on your result. 

 
3. A system, whose equation of state depends only on the volume V, temperature   and 

pressure p, is taken (quasi-statically) from state A to state B along the path ACB  at 
the pressures indicated in the figure below.  In this process 40J of heat enter the 
system and 20J of work are done by the system. 
(a) evaluate U  
(b) how much heat enters the system along the path ADB ? 
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(c) if the system goes from B to A by the curved path indicated schematically on the 
figure, the work done on the system is 30J.  How much heat enters or leaves the 
system? 

(d) If the internal energy at A is denoted by AU , etc., suppose that 20D AU U J  .  

What then is the heat transfer involved in the processes AD and DB? 
 

 
 
4. Air is contained in a vertical piston-cylinder assembly by a piston of mass 100kg  and 

having a face area of 2m01.0 .  The mass of the air is 5 g, and initially the air 
occupies a volume of 0.005 m3.  The atmosphere exerts a pressure of kPa100  on the 
top of the piston.  Heat transfer of magnitude 2 kJ  occurs slowly from the air to the 

surroundings, and the volume of the air decreases to 30.002 m .  Neglecting friction 
between the piston and the cylinder wall, determine the change in specific internal 
energy of the air, in kg/kJ .  [Note that the pressure is constant on the piston-head, 
and consists of the piston-weight and the atmospheric pressure.] 

 
5. A closed system, i.e. one which can exchange heat or work with its surroundings, but 

not matter, undergoes a thermodynamic cycle10 consisting of the following 
processes: 

Process 1-2: adiabatic compression with const.4.1 pV  from kPa74.3441 p , 
3

1 m084951.0V  to 3/12 VV   
Process 2-3: constant volume 
Process 3-1: constant pressure, kJ27317.4931 UU  

There are no significant changes in kinetic or gravitational potential energy. 
(a) sketch the cycle on a Vp   diagram 
(b) calculate the net work for the cycle 
(c) calculate the heat transfer for process 32   

 
6. How could you use the definition of the specific heat capacity at constant pressure to 

evaluate the internal energy of a material? 
 
7. Show that for a system (not necessarily an ideal gas) undergoing a constant pressure 

process, the heat input is equal to the change in enthalpy. 
 
8. Show that, for an ideal gas, Vp CCR   

                                                 
10 meaning the substance is brought back to its initial state at the end of the process; state variables resume 
their initial values 

1p

14 p

A C

D B

p

V
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9. Use the result of problem 8 to show that, when an ideal gas undergoes an adiabatic 

quasi-static change, const.pV  where Vp CC / . 

 
10. In Table 4.1.1: 

(a) Does the steam behave like an ideal gas?  Nearly? (Note the internal energies in 
Table 4.1.1b) 

(b) The internal energy decreases as the steam is compressed.  Is this what you would 
expect?  Comment. 
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4.2 Classical Thermodynamics: The Second Law 
 
 
4.2.1 A Qualitative Sketch of the Second Law and Entropy 
 
The first law of thermodynamics is concerned with the conservation of energy.  The 
second law of thermodynamics is concerned with how that energy is transferred between 
systems.  Its relevance to everyday experience can be seen from the following examples:  
 
 Ice is placed in a glass of water.  It melts. 
 A hot metal tray is taken out of the oven and placed on a bench top.  It cools. 
 A brittle plate is dropped from a height onto a hard floor.  It smashes into small pieces. 
 A piece of iron is left outside.  It rusts. 
 A bicycle tyre is pumped to high pressure and punctured.  The air rushes out. 
 
The common factor in all these examples is that energy is spreading out in a certain 
direction. 
 
 The energy in more rapidly moving warm air molecules disperses to the ice and breaks 

the intermolecular hydrogen bonds, allowing the water molecules in the ice to move 
more freely. 

 The hot metal contains a relatively large amount of energy due to its vibrating atoms 
and this energy is transferred to the surrounding air molecules and thereby dispersed. 

 The potential energy in the plate disperses through a heating of the surrounding air, the 
ground and the plate as it smashes. 

 The iron atoms and oxygen molecules in the air have chemical (potential) energy 
stored in their bonds.  When iron and oxygen react, lower energy iron oxide bonds are 
formed and the energy difference is dispersed as heat1. 

 The relatively large energy of the pressurized air in the tyre disperses when the tyre is 
punctured. 

 
Very qualitatively, the second law says that energy tends to spontaneously disperse unless 
hindered from doing so. 
 
If any of these processes were filmed and the tape accidentally played backwards, the 
mistake would immediately be evident.  However, no physical law (apart from the second 
law) would be broken if the events happened in reverse.  For example, the plate falls 
because there is a gravitational force pulling it down.  However, beginning at the end and 
working back, it is theoretically possible for the many billions of air (and ground) 
molecules, which are now moving more rapidly due to the breaking plate, to interact in 
such a perfect way that the dispersed heat flows back towards the broken pieces and so 
provides enough energy for the pieces to fly together and gain a kinetic energy to lift off 
the ground, rise up and eventually slow until it reaches its precise original position off the 
ground.  The second law says that this will not happen; energy does not spontaneously, 
that is without outside interference, gather together and concentrate in a small locality. 
 

                                                 
1 most spontaneous reactions of this type require a certain energy to get started, the activation energy, and 
this hinders the second law from wreaking havoc  
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Entropy is closely associated with the second law.  Again, qualitatively, entropy is a 
measure of how dispersed energy is.  Each system has a certain entropy and as energy 
disperses, the entropy increases.  When the air rushes out of the tyre, the entropy of the air 
and its surroundings increases.  When the hot tray cools, the entropy of the tray and 
surrounding air increases.  When the iron and oxygen react, entropy increases. 
 
Entropy can also be defined in terms of probabilities.  To take a classic example, consider 
a box with a shutter splitting it in two. A gas occupies one half of the box (as in Fig. 
4.1.8).  The shutter is then removed.  What will happen?  The gas will of course expand to 
completely fill the box.  What are the chances of this happening in reverse?  The gas 
molecules are constantly moving, but the probability of them moving about the box in 
such a way that all gas molecules would somehow occupy only one half of the box, with 
no gas in the other half of the box, is zero.  As the gas expands, it moves to a more 
probable state, and the entropy increases. 
  
The Second Law and Maximum Work 
 
When heat is supplied to the confined gas of Fig. 4.1.9, work is done when the gas 
expands and raises the weight.  However, if the flame is not placed under the apparatus 
but simply left to burn, the heat energy, according to the second law, will disperse into the 
air.  It will not ever spontaneously gather back again in a small locality where it could 
again be used to do some work.  The only way to get it back into a small locality again is 
to input even more energy.  In this sense the second law tells us that if we want to 
maximize the amount of work we can do, we need to use heat energy productively, and if 
any heat energy escapes it is not possible to use it again without expending more energy.  
In this sense, entropy can be regarded as a measure of a system’s energy unavailable for 
conversion into work. 
 
A more formal and quantitative treatment of the second law will now be given. 
 
 
4.2.2 Entropy and the Second Law 
 
Entropy 
 
The entropy S of a system is a property of that system.  The change in entropy dS  is due 
to two quantities.  First, define the entropy supply )(rS  (an increment) through 
 


 Q

S r )(             (4.2.1) 

 
where Q is the heat supply; one can imagine the entropy “flowing” into the system.  
Define also the entropy production )(iS  (also an increment) to be the difference 
between the increment of entropy and the entropy supply: 
 

)()( ir SSdS        (4.2.2) 
 
Thus the entropy change in a material is due to two components: the entropy supply, 
“carried” into the material with the heat supply, and the entropy production, which is 
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produced within the material.  (The reason for the “r” and “i” superscripts is given further 
below.) 
 
Note that, whereas the entropy S is a state function (a property), the entropy supply and 
entropy production are not, since they depend on the particular process by which the state 
has changed, and hence the use of the symbol “ ” for these functions.  (Compare 4.2.2 
with the first law, QWdU   .) 
 
The Second Law 
 
The second law of thermodynamics states that the entropy production is a non-negative 
quantity, 
 

0)( iS      The Second Law                    (4.2.3) 
 
Regarding 4.2.2, the Second Law states that the increase in entropy of a system must be at 
least as great as the entropy flowing into that system. 
 
In terms of the entropy, the first law can be written as 
 

)(

)(

i

r

SdSW

SWdU








       (4.2.4) 

 
or, including the second law, 
 

)(iSdSdUW          with        0)( iS .   (4.2.5) 
 
A process is termed reversible if the equality holds, 0)( iS , so that there is no entropy 
production, in which case )(rSdS  .  Otherwise it is termed an irreversible process, in 
which case )()( ir SSdS   .  The superscript “r” on the entropy supply is to indicate 
that the entropy supply is equivalent to the change of entropy in a reversible process.  The 
superscript “i” on the entropy production is to indicate that entropy production is 
associated with irreversible processes. 
 
Alternative Statements of the Second Law 
 
There are many different statements of the second law and each can be “derived” from 
the others (there is no one agreed version).  Another useful definition is that the heat input 
to the system in transforming from state A to state B is bounded from above, according to 
 

dSQ            (4.2.6) 
 
The maximum possible heat input is dS , in which case the entropy change is due 
entirely to entropy supply, with no entropy production – a reversible process.  It can be 
seen that the statement dSQ    is equivalent to the statement 0)( iS . 
 
A re-arrangement of Eqn. 4.2.6 gives the classic Clausius’s inequality: 
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
Q

dS         (4.2.7) 

 
 
4.2.3 Reversibility 
 
Pure Heating 
 
As an example of a reversible process, consider a pure heating (or cooling) process, 
where the volume is held constant, Fig. 4.2.1.  Taking the two state variables to be   and 
V , it follows from 4.2.5 that the work increment can be expressed as 
 

( )i

V

U S U S
W dV d S

V V 

    
 

                   
                (4.2.8) 

 

 
 

Figure 4.2.1: Pure heating 
 
With 0 dVW , this reduces to 
 

( ) 0i

V

U S
d S  

 
       

         (4.2.9) 

 
Now U and S are state functions, and the partial derivatives and, in particular, the term 
inside the brackets are also properties of the system.  Further, 0)( iS , 0 , and d  
can be positive, negative or zero. Since d  can be assigned a value completely 
independently of the value of the term inside the brackets, the equality in Eqn. 4.2.9 can 
only be satisfied in general if both 
 

0and0 )( 

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
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
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 i

V

S
SU 
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

                 (4.2.10) 

 
The second equality shows that a quasi-static pure heating process is always reversible.  
As mentioned, the first equality is a relation between state functions and is not path-
dependent and hence holds for all processes, not just for pure heating. 
 
In reality there is never any such thing as a completely reversible process – in the case of 
pure heating, a reversible process would require that the temperature at any instant is 
uniform throughout the material, which will never be exactly true.  It will be shown 
below that if there is any appreciable temperature gradient within a material then there 
will be entropy production. 
 
 

V
SU

,
,



Q
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Reversible Processes  
 
To be precise, a process is reversible when both the system and its surroundings can be 
returned to their original states.  For example, if the material in a piston-cylinder 
arrangement is compressed quasi-statically and there is no friction between the piston and 
cylinder walls, then the process is reversible – the load can be reduced by very small 
amounts and the material will “push back” on the piston returning it to its original 
configuration, with no net work done or heat supplied to the system. 
 
Irreversible Processes 
 
An irreversible process is one for which there is entropy production, 0)( iS .  In 
practice, irreversibilities are introduced into systems whenever there is spontaneity: 
 
 unrestrained expansion of a gas/liquid to a lower pressure – for example when the 

lid is taken off a gas at high pressure, and is allowed to escape into the atmosphere 
 heat transfer from one part of a material to another part at a lower temperature 

(except in the ideal case where the temperature difference is infinitesimal) 
 friction (both the sliding friction of solid on solid and the friction that occurs 

between molecules in the flow of fluids) 
 
The common factor amongst all these is that the system and its surroundings cannot be 
returned to their original configurations.  For example, with the piston-cylinder 
arrangement, friction between the piston head and cylinder walls means that further work 
needs to be expended on the return stroke so that, although the piston-cylinder is returned 
to its original state, a net amount of work needs to be done and so the “surroundings”, or 
whatever is producing the work, is not back at its original state.  Similarly, if the piston 
was compressed very quickly to its final position, the temperature, momentarily, might 
well be higher at the piston head than further down in the material.  This would produce a 
spontaneous heat transfer from the upper part of the material to the lower part and it 
would not be possible to return the system and its surroundings to their original states. 
 
Irreversible Heat Transfer 
 
In the processes studied so far, it has been assumed that all the state functions were 
uniform throughout the material.  In particular, it has been assumed that the temperature 
is uniform throughout.  What if one now has a system whose parts are at different 
temperatures?  
 
Suppose that a quantity of heat Q  flows from a body at temperature 1  to a body at 

temperature 2 , Fig. 4.2.2.  One can imagine for the sake of argument that the heat 
capacities of both bodies are sufficiently large that their temperatures are effectively 
unchanged by the heat flow.  The two bodies are insulated from their surroundings. 
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`  
 

Figure 4.2.2: Heat flow from one body to another 
 
This is pure heating and so the entropy change due to this heat transfer are the entropy 
supplies 0/ 1

)(
1   QS r  and 0/ 2

)(
2   QS r .  Considering now the complete 

system (both bodies), there is no entropy supply, so any entropy change must be an 
entropy production 

 

12

)(





 QQ

S i                        (4.2.11) 

 
Since 0)( iS , it follows that 21   , that is, heat flows from the warmer body to the 
colder body. 
 
In this example there is no work done, no heat transfer and no internal energy change, but 
there is an entropy change. 
 
If one wants the heat transfer to be very nearly reversible, one can make the entropy 
production very small.  This can be achieved by making the temperature difference 
between the two bodies very small: by letting   21 , , one has 

   //)(  QS i .  Keeping the entropy supply constant, this means that one must 
make  /  as small as possible.  Thus heat transfer is reversible only if there is an 
“infinitely small” temperature difference between the two bodies. 
 
Entropy supply is due to heat transfer, but the entropy production here is due to an 
adiabatic irreversible change. 
 
Entropy Measurements 
 
The entropy of a material can be measured as follows.  First, since )(/ iSQdS   , 

one has   )(/ iSdCdS    where C is the specific heat capacity.  Thus, for a 
reversible process, one has 
 

 2

1

/



dCS        (reversible)                         (4.2.12) 

 
but one must ensure that the entropy production is zero.  In practice, what one does is 
keep  /d  small enough so that the entropy production is sufficiently small for the 
accuracy required.  Once the entropy change is found, it of course applies to all processes, 
not just the reversible process used in the experiment. 
 

22 , S11, S

Q
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Thermodynamic Equilibrium 
 
Thermodynamic equilibrium has already been mentioned – it occurs when no changes of 
the state variables can occur.  Thus, one requires that 0 dUQW  .  With 0Q , 

one has 0)( rS  and )(idSdS  .  For full equilibrium, one requires that 0)( idS  but, 
since entropy production tends always to increase the entropy, thermal equilibrium can 
only occur if the entropy has reached its maximum possible value. 
 
 
4.2.4 Free Expansion of an Ideal Gas 
 
It was seen that, for an ideal gas undergoing a quasi-static process (see Eqn. 4.1.25),  
 

   121212 /ln/ln VVmRCSSS V                    (4.2.13) 

 
and the entropy production is zero.  In other words, any quasi-static process involving an 
ideal gas is reversible. 
 
Consider an isothermal quasi-static process in which an ideal gas is heated very slowly, 
so that it does work and expands to twice its original volume.  One has ln 2S mR  . 
This is the change in entropy in the gas; the surroundings has an equal decrease in entropy 
as heat leaves it so that, by definition, the total entropy change in this reversible process is 
zero. 
 
Consider now a thermally insulated container divided by a partition into two parts each of 
volume V.  One of these contains an ideal gas and the other is evacuated.  The partition is 
taken away, so that the gas completely fills the container (see Fig. 4.1.8).  During the 
spontaneous expansion, there is a complex non-equilibrium turbulence.  The gas 
eventually settles down to its new equilibrium position.  The initial and final states are as 
for the reversible heating described above, so the entropy change in the gas must again be 

2lnmRS  .  However, here there is no interaction with the surroundings, so this 
entropy must be entropy production. 
 
 
4.2.5 Problems 
 
1. A system undergoes a process in which work is done on the system and the heat 

transfer Q  occurs at a constant temperature b .  For each case, determine whether 

the entropy change of the system is positive, negative, zero or indeterminate: 
(a) reversible process, 0Q  
(b) reversible process, 0Q  
(c) reversible process, 0Q  
(d) irreversible process, 0Q  
(e) irreversible process, 0Q  
(f) irreversible process, 0Q  
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2. A block of lead at temperature K200  has heat capacity 1KJ1000 C , which is 

independent of temperature in the range K200100  .  It is to be cooled to K100  in 
liquid baths, which are large enough that their temperatures do not change.  Assume 
that the only heat transfer which occurs is between the liquid baths and the lead 
block, and that the lead block changes temperature instantaneously/uniformly (so that 
there is no entropy production within the block).  What is the entropy supply for the 
lead and the liquid bath(s), and the net entropy production, during the following 
processes: the lead is 
(a) plunged straight into a liquid bath at K100  
(b) first cooled in a bath at K150  and then in a second bath at K100  
(c) cooled using four baths at temperatures K175 , K150 , K125  and K100  
(d) cooled in an infinite number of temperature baths with a continuous range from 

K200  to K100  
[hint: no work is done; use the lead’s heat capacity to evaluate Q] 

 
3. Consider an insulated piston-cylinder assembly which initially contains water as a 

saturated liquid at C100  (373.15 K), as illustrated below.  A paddle wheel acts on the 
water, which undergoes a process to the corresponding saturated vapour state at the 
same temperature, during which the piston moves freely in the cylinder (no friction).  
Using the data below, determine 
(a) the net work per unit mass done – which is greater, the work done by the paddle 

wheel or that done by the expanding water? 
(b) the specific entropy supply; the specific entropy production – why do you think it 

is non-zero? 
Next, consider the case where the initial and final states are the same as before, but 
the change is now brought about by the supply of heat only (with no paddle wheel).  
Determine 
(c) the work done per unit mass2 
(d) the heat transfer per unit mass 
(e) the specific entropy supply and the specific entropy production – is this a 

surprise? 
   

 
 

 u (kJ / kg) v (m3 / kg) s (kJ / kg.K) p (MPa) 
Liquid 400 0.001 1.448 0.1014 

Gas 2500 1.6 7.510 0.1014 

                                                 
2 the initial and final temperatures and pressures are C100  and  0.1014 MPa – these are the “end-points” 

for the initial and final states – in general, they may not necessarily be constant throughout the process – we 
do not know (and don’t have to know here) how the temperature and pressure changed during the process in 
parts (a-b); with the paddle wheel, the temperature and pressure are unlikely to be uniform throughout the 
material.  For parts (c-e), it is reasonable to assume that they are constant throughout 
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4. A certain mass of an ideal gas for which 2/3RCV  , independent of temperature, is 

taken reversibly from Pa10K,100 5 p  to Pa108K,400 5 p  by two 
different paths (1) and (2): 
(1) consisting of (a) at constant volume from K400100  , (b) isothermally to 

the final pressure 
(2) consisting of (a) at constant pressure from K400100  , (b) isothermally to 

the final volume 
Calculate the entropy changes and verify that the total entropy change is the same for 
both paths.  Compare this with the heat absorbed or given out for each of paths (1) 
and (2) – they even turn out to be of opposite sign. 
[hint: use the ideal gas law and the fact that for a constant volume process, 

 dCQ V ; also, use Eqn. 4.2.13, the fact that dSQ
S

S
2

1
rev  , and the result of Q.8 

from section 4.1] 
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4.3 Thermodynamic Functions 
 
Four important and useful thermodynamic functions will be considered in this section 
(two of them have been encountered in the previous sections).  These are the internal 
energy U, the enthalpy H, the Helmholtz free energy (or simply the free energy)   
and the Gibbs free energy (or simply the Gibbs function) G.  These functions will be 
defined and examined below for both reversible and irreversible processes. 
 
 
4.3.1 Reversible Processes 
 
Consider first a reversible process. 
 
The Internal Energy 
 
The internal energy is 
 

dSpdV

QWdU






        (4.3.1) 

 
the second line being valid for quasi-static processes.  The properties of a pure 
compressible substance include SV ,,  and p.  From 4.3.1, it is natural to take V and S as 
the state variables: 
 

dS
S

U
dV

V

U
dU

VS





















             (4.3.2) 

 
so that  
 

VS S

U

V

U
p 




















 ,             (4.3.3) 

 
Thus ),( SVU  contains all the thermodynamic information about the system; given V and 
S one has an expression for U and can evaluate p and   through differentiation.  U is a 
thermodynamic potential, meaning that it provides information through a 
differentiation. 
 
V and S are said to be the canonical (natural) state variables for U.  By contrast, 
expressing the internal energy as a function of the volume and temperature, for example, 

),( VUU  , is not so useful, since this cannot provide all the necessary information 
regarding the state of the material.  A new state function will be introduced below which 
has V and   as canonical state variables. 
 
Similarly, the equation of state ),( pV  does not contain all the thermodynamic 
information.  For example, there is no information about U or S, and this equation of state 
must be supplemented by another, just as the ideal gas law is supplemented by the caloric 
equation of state )(UU  . 
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Returning to the internal energy function, and taking the differential relations between 

,p  and U, Eqns. 4.3.3, and differentiating them again, and using the fact that 

VSUSVU  // 22 , one arrives at the Maxwell relation, 
 

SV VS

p























     (4.3.4) 

 
The Helmholtz Free Energy 
 
Define the (Helmholtz) free energy function through 
 

 SU              (4.3.5) 
 
One has 
 





SdpdV

dSQdU

dSdSdUd





,                (4.3.6) 

 
the second line being valid for reversible processes.  Now V and   have emerged as the 
natural state variables.  Writing ),( V , 
 




ddV
V

d
V





















           (4.3.7) 

 
so that  
 

V

S
V

p 






















,            (4.3.8) 

  
 
The Enthalpy and Gibbs Free Energy 
 
The enthalpy is defined by Eqn. 4.1.18, 
 

pVUH             (4.3.9) 
 
To determine the canonical state variables, evaluate the increment: 

 
dH dU pdV Vdp

W Q pdV Vdp 
  
   

                           (4.3.10) 

 
and so 

 
VdpdSdH                                          (4.3.11) 
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and the natural variables are p and S .  Finally, the Gibbs free energy function is defined 
by 
 

pVSUG                          (4.3.12) 
 
and the canonical state variables are p and  . 
 
The definitions, canonical state variables and Maxwell relations for all four functions are 
summarised in Table 4.3.1 below. 
 

Thermo-
dynamic 
potential 

Symbol 
and 

appropriate 
variables 

Definition 
Differential 
relationship Maxwell relation 

Internal 
energy ),( VSU   dSpdVdU   

VS

SV

S

p

V

V

U
p

S

U













































 ,
 

Enthalpy ),( pSH  pVUH   dSVdpdH   

pS

Sp

S

V

p

p

H
V

S

H















































 ,
 

Helmholtz 
free 

energy 
),( V  SU   SdpdVd   

V

V

p

V

S
V

pS



















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





























,

Gibbs free 
energy 

),( pG   pVSUG    SdVdpdG   

p

p

V

p

S
p

G
V

G
S





















































,
 

Table 4.3.1: Thermodynamic Potential Functions and Maxwell relations 
 
Mechanical variables: whereas the internal energy and the Helmholtz free energy are 
functions of a kinematic variable (V), the enthalpy and the Gibbs function are functions of 
a force variable (p). 
 
Thermal variables: whereas the internal energy and the enthalpy are functions of the 
entropy, the Helmholtz and Gibbs free energy functions are functions of the temperature. 
 
If one is analyzing a process with, for example, constant temperature, it makes sense to 
use either the Helmholtz or Gibbs free energy functions, so that there is only one variable 
to consider. 
 
Note that the temperature is an observable property and can be controlled to some extent.  
Values for the entropy, on the other hand, cannot be assigned arbitrary values in 
experiments.  For this reason a description in terms of the free energy, for example, is 
often more useful than a description in terms of the internal energy. 
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4.3.2 Irreversible Processes 
 
Consider now an irreversible process. 
 
The Internal Energy 
 
One has )(iSdSdUW    and, with the internal energy again a function of the 
entropy and volume, 
 

)(i

SV

SdV
V

U
dS

S

U
W  








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


















        (4.3.13) 

 
Consider the case of pure heating 0)(  iSdVW  , so  
 

VS

U










        (4.3.14) 

 
as in the reversible case.  This relation between properties is of course valid for any 
process, not necessarily a pure heating one.  Thus 
 

)(i

S

SdV
V

U
W  










                             (4.3.15) 

 
Express the work in the form 
 

dVAdVA
WdWW

dq

dq

)()(

)()(


      (4.3.16) 

 
such that the quasi-conservative force )(qA  is that associated with the work )(qW   which 
is recoverable, whilst the dissipative force dA  produces the work )(dW  which is 
dissipated, i.e. associated with irreversibilities. 
 
From 4.3.15,  
 

S

q

V

U
A 










)(          (4.3.17) 

 
and the dissipative work )(dW  is 
 

0)()()(  idd SdVAW         (4.3.18) 
 
The name quasi-conservative force for the )(qA  (here, actually a force per area) is in 
recognition that the internal energy plays the role of a potential in 4.3.17, but it is also a 
function of the entropy.  It can be seen from Eqn. 4.3.17 that the quasi-conservative force 
is a state function, and equals p  in a fully reversible process. 
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In the isentropic case, 0dS  , and one has 
 

( )iW dU S                 (4.3.19) 
 
This shows that, in the isentropic case, the internal energy is that part of the work which 
is recoverable. 
 
The Free Energy 
 
Directly from SU  , with   and V the independent variables, 
 

S
SU


















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



,          

V

S

V

U

V 








      (4.3.20) 

 
From the pure heating analysis given earlier, Eqn. 4.2.9-10, the term   // SU  
is zero, so 
 

V

S 












                                  (4.3.21) 

 
as in the reversible case and  
 




SddV
V

d 







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        (4.3.22) 

 
The work can now be written again as Eqn. 4.3.16, but now with the quasi-conservative 
force given by {▲Problem 3} 
 










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
V

A q)(             (4.3.23) 

 
The dissipative work is again given by 4.3.18.  Also, pA q )(  for a reversible process. 
 
In the isothermal case, 0d , 
 

)(iSdW                 (4.3.24) 
 
This shows that, in the isothermal case, the free energy is that part of the work which is 
recoverable. 
 
The quasi-conservative forces for the internal energy and free energy are listed in Table 
4.3.2.  Note that expressions for quasi-conservative forces are not available in the case of 
the Enthalpy and Gibbs free energy since they do not permit in their expression 
increments in volume dV , which are required for expressions of work increment. 
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Thermo-dynamic potential Differential relationship Relations 

),( VSU  )(iSdSpdVdU    
S

q

V V

U
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S

U

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

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 )(,  

SUV   ),(  )(iSSdpdVd   ( ), q

v

S A
V 

             
 

Table 4.3.2: Quasi-Conservative Forces for Irreversible Processes,  
pdVSdVAW iq  )()(   

 
 
4.3.3 The Legendre Transformation 
 
The thermodynamic functions can be transformed into one another using a mathematical 
technique called the Legendre Transformation.  The Legendre Transformation is 
discussed in detail in Part IV, where it plays an important role in Plasticity Theory, and 
other topics.  For the present purposes, note that the Legendre transformation of a 
function ),( yxf  is the function ),( g  where 
 

),(),( yxfyxg                (4.3.25) 
 
and 
 

y

f

x

f


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



  , ,      
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






g

y
g

x ,                   (4.3.26) 

 
When only one of the two variables is switched, the transform reads 
 

),(),( yxfxyg           (4.3.27) 
 
where 
 

x

f




 ,      




g

x                             (4.3.28) 

 
For example, if one has the function ),( VSU  and wants to switch the independent 
variable from S to  , Eqn. 4.3.27 leads one to consider the new function 
 

),(),( VSUSVg         (4.3.29) 
 
and Eqns. 4.3.28 give 
 

VS

U










      and     
V

g
S 













   (4.3.30) 

 
It can be seen that ),( Vg   is the negative of the Helmholtz free energy and the two 
differential relations in 4.3.30 are contained in Table 4.3.1. 
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4.3.4 Problems 
 
1. By considering reversible processes, derive the differential relationships and the 

Maxwell relations given in Table 4.3.1 for (a) the enthalpy, (b) the Gibbs free energy 
 
2. Let the two independent variables be V and  .  Consider the internal energy, 

),( VUU  .  Use the pure heating example considered in §4.2 to show that the 
quasi-conservative force of Eqn. 4.3.17 can also be expressed as 



 















V

S

V

U
A q)(  

 
3. Show that Eqn. 4.3.22 leads to Eqn. 4.3.23. 
 
4. Use the Legendre Transformation rule to transform the Helmholtz free energy 

),( V  into a function of the variables   and  .  Derive also the two differential 
relations analogous to Eqns. 4.3.30.  Show that this new function is the negative of the 
Gibbs energy (use the relation SU  ), where p , and that the two 
differential relations correspond to two of the relations in Table 4.3.1. 

 
5. Use the Legendre Transformation rule to transform the enthalpy ),( pSH  into a 

function of the variables S  and V .  Show that this new function is the negative of the 
internal energy, and that the two differential relations correspond to two of the 
relations in Table 4.3.1. 

 



Section 4.4 

Solid Mechanics Part III                                                                                Kelly 421

4.4 Continuum Thermomechanics 
 
The classical thermodynamics is now extended to the thermomechanics of a continuum.  
The state variables are allowed to vary throughout a material and processes are allowed to 
be irreversible and move far from thermal and mechanical equilibrium.  Some schools of 
thought would question whether entropy is a state function at all under these conditions.  
Here, we simply accept the fact that it is.  This is part of the rational thermodynamics 
approach and is generally accepted in the solid mechanics community. 
 
 
4.4.1 The First Law 
 
The first law of thermodynamics is, in rate form,   
 

KUQPext
  *           (4.4.1) 

 
where extP  is the power of the external forces, *Q  is the rate at which heat is supplied 

(called the thermal power, the non-mechanical power, or the rate of thermal work), 
U  is the rate of change of the internal energy and K  is the rate of change of kinetic 
energy.  The superscript “*” is used here and in what follows to indicate rates of change 
of quantities which are not state functions. 
 
Recall from Part III, Eqn 3.8.2, the mechanical energy balance, 
 

KPP  intext                                            (4.4.2) 

 
Eliminating extP  and K  from these equations leads to 

 
UQP  *

int           (4.4.3) 

 
Heat supply 
 
It is convenient to write the total heat supply to a finite volume of material as an integral 
over the volume.  This is done by defining the heat flux q to be the rate at which heat is 
conducted from interior to exterior per unit area, Fig. 4.4.1.  The rate of heat entering is 

thus ds
s  nq .   Let there also be a source of heat supply inside the material, for 

example a radiator of heat.  Let dvr
v  be the rate of such heat supply, where the scalar r is 

the heat source, the rate of heat generated per unit volume.  Thus, with the divergence 
theorem, 
 

dvrdvQ
vv
  qdiv*             (4.4.4) 
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Figure 4.4.1: heat flux vector and normal vector to a surface element 
 
Recall also from Part III, Eqns. 3.8.15, the stress power 
 


v

dvP dσ :int                                                  (4.4.5) 

 
Combining Eqns. 4.4.3-5, and expressing the strain energy rate in the form of an integral 
(see Part III, Eqn. 3.8.15) leads to 
 

  
vvv v

dvdvrdvdv udiv: qdσ         (4.4.6) 

 
Since this holds for all volumes v, one has the local form  
 

udiv:  rqdσ       The First Law                  (4.4.7) 
 
 
4.4.2 The Second Law 
 
Entropy 
 
The entropy ),( tS x  is defined as the scalar property 
 

dvsS
v
       (4.4.8) 

 
where s is the specific entropy or entropy density.  The change in entropy is due to two 
quantities.  First, very like the heat transferred into a body, Eqn. 4.4.4, define the entropy 
supply )*(rS  to be the rate of entropy input, 
 

dvsdsS
v

r

s

r   nsq
)*(          (4.4.9) 

 
where qs  is the entropy flux through the element surface and rs  is entropy supply due to 

sources within the element .  Further, the entropy flux is taken to be proportional to the 
heat flux, and the proportionality factor is the reciprocal of the non-negative scalar 
absolute temperature   (and similarly for the density rs  and the heat supply density r) 
so that, using the divergence theorem, 
 

q

n

ds
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dv
r

dv

dv
r
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vv
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

















q

n
q

div

)*(

                (4.4.10) 

 
Define the entropy production )*(iS  to be the difference between the rate of change of 
entropy and the entropy supply: 
 

)*()*( ri SSS       (4.4.11) 
 
The second law of thermodynamics states that the entropy production is a non-negative 
quantity,  
 

0)*( iS                                   (4.4.12) 
 
The Clausius-Duhem Inequality 
 
Thus one has the Clausius-Duhem inequality: 
 

0div)*( 





 

vvv

i dv
r

dvdvs
dt

d
S


 q

                        (4.4.13) 

 
In local form, the Clausius-Duhem inequality reads as (introducing a specific entropy 
production, *)(is ) 
 

0div
1*)( 









r

ss i q              (4.4.14) 

 
or, equivalently {▲Problem 1}, 
 
 

0)(
1

div
1

2
*)(  


qq

r
ss i        The Second Law      (4.4.15) 

 
This is the continuum statement of the Second Law. 
 
 
4.4.3 The Dissipation Inequality 
 
Eliminating qdiv  (and r) from both the first and second laws leads to the dissipation 
inequality 
 

  0)(
1

:
1*)(  


 qdσuss i   Dissipation Inequality      (4.4.16) 
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The term *)(is  is the specific dissipation (or internal dissipation) and is denoted by the 
symbol  .  The Clausius-Duhem inequality can simply be written as 
 

0)*(  is                   (4.4.17) 
 

Multiplying Eqn. 4.4.16 across by the density leads to 
 

          0)(
1

:*)( 



  


 qdσuss i              (4.4.18) 

 
Each term here has units of power per unit (current) volume.  The term inside the first 
bracket is called the mechanical dissipation (per unit volume).  The term inside the 
second bracket is the dissipation due to temperature gradients, i.e. heat flow, and is called 
the thermal dissipation (per unit volume).  Note that the thermal dissipation will always 
be positive if q and   are of opposite sign.  Integrating over a volume v leads to 
 

    dvdvsudvs
vvv

i  





  qdσ 


 1

:)*(                     (4.4.19) 

 
 
 
 
 
The term *)(is  in Eqn. 4.4.18 is often denoted by the symbol   and also termed the 
dissipation.  This is a dissipation per unit volume.  When the deformations are small, the 
volume changes are negligible.   When the deformations are appreciable, however, the 
volume and density change, and it is better to work with specific quantities such as  .  
 
The dissipation inequality 4.4.16 is in terms of the internal energy.  In terms of the 
specific free energy  su  , one has 
 

  0)(
1

:
1*)(  


 qdσss i                (4.4.20) 

 
 
4.4.4 The Clausius-Plank Inequality 
 
In many applications the thermal dissipation is very much smaller than the mechanical 
dissipation (in fact it is zero in many important applications – see section 4.4.7 below).  If 
this is the case then the thermal dissipation rate can be ignored, and one has the stronger 
form of the second law, in terms of internal energy and free energy, 
 

mechanical 
dissipation 

thermal 
dissipation 

dissipation 
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
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






s

us

   Clausius-Plank inequality    (4.4.21) 

 
which is known as the Clausius-Plank inequality.  
 
Equivalently, one can argue that the processes of mechanical dissipation and heat flow are 
independent, so that each are separately required to be non-negative, again leading to 
Eqn. 4.4.21.  This issue will be explored more fully in Part IV, where it will indeed be 
shown that the thermal dissipation is very often decoupled from the mechanical 
dissipation, with both being required to be separately positive. 
 
Using the first law, Eqn. 4.4.21 can be rewritten in the alternative form 
 

qdiv
11


  rs                                                (4.4.22) 

 
which is an evolution equation for s (showing how it evolves over time). 
 
 
4.4.5 Special Thermodynamic Processes 
 
Some important limiting processes are considered next. 
  
Reversible Processes 
 
In a reversible process, 0)*(  is .  The Clausius-Plank inequality now becomes 
 

 dσ :
1


  su       or      dσ :

1


   s                      (4.4.23) 

 
From the First Law, 
 

div
s


 

q                                                    (4.4.24) 

 
This is the entropy supply (with zero temperature gradients) and corresponds to the 
classical thermodynamic (for which, also, 0  ) expression  /)( QdS r  . 
 
Isentropic Conditions 
 
For an isentropic process, the entropy is constant and remains constant, so 0s .  In this 
case, the dissipation is 
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  0)(
1

:
1

 


 qdσu                 (4.4.25) 

 
Isothermal Conditions 
 
In an isothermal process, the absolute temperature remains constant, 0 .  This can be 
achieved, for example, by keeping the material’s surroundings at constant temperature, 
and loading the material very slowly, so that any temperature differences which arise 
between the material and surroundings are allowed to disappear. 
 
The Clausius-Plank inequality becomes 
 

  0:
1

 dσ


 us     or     0:
1

 dσ


                 (4.4.26) 

 
Equilibrium Conditions 
 
As mentioned in §4.2.3, a material which is unaffected by external conditions has no 
work done to it or heat supplied and the first law then states that the internal energy is 
constant.  In that case, when the entropy has reached a maximum and the dissipation is 
zero, there is no more change in any of the state variables, and equilibrium has been 
reached. 
 
Adiabatic Conditions 
 
In an adiabatic process, oq  .  This can be achieved, for example, by very rapid loading, 
so that there is no time for heat exchange with the surroundings. 
 
Under these conditions (and taking also 0r ), the first law reads u: dσ  (recall that 
the internal energy change is equal to the work done in an adiabatic process).  The 
dissipation inequality reduces to 
 

0*)(  ss i            (4.4.27) 
 
or 
 

0 s                     (4.4.28) 
 
If the process is both adiabatic and isentropic, then 0 s .  An adiabatic reversible 
process is equivalent to an isentropic reversible process. 
 
 
4.4.6 Summary 
 
A summary of the thermomechanical theory, showing the various laws and relations 
which are involved, and how they are interconnected, is given in Fig. 4.4.2 below. 
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Figure 4.4.2: Thermomechanics 
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4.4.7 The use of Thermomechanics in Developing Material 

Models 
 
Material models and the consequences of the laws of thermomechanics will be discussed 
in depth in Part IV.  Here, as an introduction, the case of small-strain elastic/thermoelastic 
materials will be touched upon briefly. 
 
The classical thermodynamic expression for the work done to a system is W pdV   .  
This was generalised to the continuum statement for the power exerted on an infinitesimal 
element, :σ d .  In the same way, the kinematic variable of the classical thermodynamic 
system, V, is generalised to the case of a continuum by considering the state to be a 
function of the strains.  
 
When the strains are small, the rate of deformation is equivalent to the time rate of change 
of the small strain tensor: 
 

 εd  ,             ijijd          (4.4.29) 

 
The dissipation inequalities are then 
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                                                                      or 
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(4.4.30) 
 
Reversible Process 
 
In the case of reversible processes: 
 

,

1 1
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                                                                      or 
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                    (4.4.31) 
 
Consider now a material whose state is completely defined by the set of state variables 
( , )ij  , so the free energy state function is ),( ij  .  This defines the thermoelastic 

material.  The internal energy is expressed in canonical form as  ),( ijsuu   (see section 

4.3).  One then has 
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Thus 
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                     (4.4.33) 
 
Consider now the free energy equation here (the argument which follows applies also to 
the internal energy equation).  The state variables are ( , )ij   and the other properties are 

state functions of these variables; these include all the terms inside the brackets, that is, 
, , ijs    and also the partial derivatives.  For any particular state, these properties will 

have certain values.  On the other hand, no matter the state, the variables ,, ,ij i     can (in 

theory) be assigned arbitrary values: negative, zero or positive.  The terms which pre-

multiply , ij    are completely independent of these variables – indeed, this fact is built 

into the model under consideration: the state is a function of ( , )ij   only and is not, for 

example, dependent on the values of ,, ,ij i    .  On the other hand, q is not a state function 

and in fact may be a function of the temperature gradients.  The only way that Eqn. 4.4.33 
can be satisfied in general, then, is for  
 

0                                                       (4.4.34) 
 
and the following relations must hold (compare these with 4.3.3 and 4.3.8): 
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 ,               (4.4.35) 

Constitutive Relations for Small-Strain Reversible Processes 
 
Note that the density (and volume) changes for small strains may be neglected, so that the 
density in 4.4.35 can be taken to be the current density or the density in the undeformed 
configuration, 0 . 
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4.4.8 Thermomechanics in the Material Form 
 
The dissipation inequality is derived here for the case of the material description. 
 
The First Law 
 
In order to rewrite the energy balance equations in material form, first introduce the 
scalars (what follows is analogous to the definitions of traction and stress with respect to 
the current and reference configurations) 
 

NQ

nq
N

n




)(

)(

Q

q
               (4.4.36) 

 
Here q is the Cauchy heat flux of Eqn. 4.4.4, defined per unit current surface area ds  
with outward normal n, and Q the Piola-Kirchhoff heat flux, defined per unit reference 
surface area dS  and outward normal N. 
 
The rate of heat transfer into the material can now be written as either of 
 

dSds
Ss
  NQnq        (4.4.37) 

 
Using Nanson’s formula, Part III, Eqn. 2.2.59, dSJds NFn T , the Cauchy and Piola-
Kirchhoff heat flux vectors are related through qFQ 1 J . 
 
The combination of the mechanical energy balance with the first law, i.e. Eqn. 4.4.3, then 
reads (see also Part III, Eqn. 3.7.26) 
 

   
VV V V

dVdVRdVdV uDiv: 0  QFP             (4.4.38) 

 

where dvrdVR
vV   , or, in local form, 

 
uDiv: 0   RQFP     (4.4.39) 

 
or 
 

uDiv: 0   RQES     (4.4.40) 

 
Note that, comparing the spatial and material forms,  
 

qQqQqQ div
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,divDiv,divDiv
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             (4.4.41) 
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The Second Law 
 
Analogous to Eqn. 4.4.13, the second law can be expressed in material form as 
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         (4.4.42) 

 
or, analogous to 4.4.16, one has the dissipation inequality  
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Isothermal Conditions 
 
In an isothermal process,  
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The second of these can be written as 

0 0:     P F       with      0               (4.4.45) 

where the rate of free energy  0   and the dissipation  0  are per unit reference 

volume. 
 
 
4.4.9 Objectivity 
 
By definition, the scalars heat Q, internal energy U, entropy S and temperature   are 
objective, that is they remain unchanged under an observer transformation 2.8.7.  It 
follows that the heat flux vector q is also objective, transforming according to 2.8.10.  By 
definition, the vector entropy flux qs  is objective,  that is it transforms according to 

2.8.10.   
 
 
4.4.10 Problems 
 

1. Show that )(
1

div
1

div
2



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
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
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qq
q

 

 
2. Show that the relation qFQ 1 J  is consistent with the relation 4.4.41, 

qQ divDiv J . 
 
 
 


