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4.4 Continuum Thermomechanics 
 
The classical thermodynamics is now extended to the thermomechanics of a continuum.  
The state variables are allowed to vary throughout a material and processes are allowed to 
be irreversible and move far from thermal and mechanical equilibrium.  Some schools of 
thought would question whether entropy is a state function at all under these conditions.  
Here, we simply accept the fact that it is.  This is part of the rational thermodynamics 
approach and is generally accepted in the solid mechanics community. 
 
 
4.4.1 The First Law 
 
The first law of thermodynamics is, in rate form,   
 

KUQPext
  *           (4.4.1) 

 
where extP  is the power of the external forces, *Q  is the rate at which heat is supplied 

(called the thermal power, the non-mechanical power, or the rate of thermal work), 
U  is the rate of change of the internal energy and K  is the rate of change of kinetic 
energy.  The superscript “*” is used here and in what follows to indicate rates of change 
of quantities which are not state functions. 
 
Recall from Part III, Eqn 3.8.2, the mechanical energy balance, 
 

KPP  intext                                            (4.4.2) 

 
Eliminating extP  and K  from these equations leads to 

 
UQP  *

int           (4.4.3) 

 
Heat supply 
 
It is convenient to write the total heat supply to a finite volume of material as an integral 
over the volume.  This is done by defining the heat flux q to be the rate at which heat is 
conducted from interior to exterior per unit area, Fig. 4.4.1.  The rate of heat entering is 

thus ds
s  nq .   Let there also be a source of heat supply inside the material, for 

example a radiator of heat.  Let dvr
v  be the rate of such heat supply, where the scalar r is 

the heat source, the rate of heat generated per unit volume.  Thus, with the divergence 
theorem, 
 

dvrdvQ
vv
  qdiv*             (4.4.4) 
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Figure 4.4.1: heat flux vector and normal vector to a surface element 
 
Recall also from Part III, Eqns. 3.8.15, the stress power 
 


v

dvP dσ :int                                                  (4.4.5) 

 
Combining Eqns. 4.4.3-5, and expressing the strain energy rate in the form of an integral 
(see Part III, Eqn. 3.8.15) leads to 
 

  
vvv v

dvdvrdvdv udiv: qdσ         (4.4.6) 

 
Since this holds for all volumes v, one has the local form  
 

udiv:  rqdσ       The First Law                  (4.4.7) 
 
 
4.4.2 The Second Law 
 
Entropy 
 
The entropy ),( tS x  is defined as the scalar property 
 

dvsS
v
       (4.4.8) 

 
where s is the specific entropy or entropy density.  The change in entropy is due to two 
quantities.  First, very like the heat transferred into a body, Eqn. 4.4.4, define the entropy 
supply )*(rS  to be the rate of entropy input, 
 

dvsdsS
v

r

s

r   nsq
)*(          (4.4.9) 

 
where qs  is the entropy flux through the element surface and rs  is entropy supply due to 

sources within the element .  Further, the entropy flux is taken to be proportional to the 
heat flux, and the proportionality factor is the reciprocal of the non-negative scalar 
absolute temperature   (and similarly for the density rs  and the heat supply density r) 
so that, using the divergence theorem, 
 

q

n

ds
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                (4.4.10) 

 
Define the entropy production )*(iS  to be the difference between the rate of change of 
entropy and the entropy supply: 
 

)*()*( ri SSS       (4.4.11) 
 
The second law of thermodynamics states that the entropy production is a non-negative 
quantity,  
 

0)*( iS                                   (4.4.12) 
 
The Clausius-Duhem Inequality 
 
Thus one has the Clausius-Duhem inequality: 
 

0div)*( 





 

vvv

i dv
r

dvdvs
dt

d
S


 q

                        (4.4.13) 

 
In local form, the Clausius-Duhem inequality reads as (introducing a specific entropy 
production, *)(is ) 
 

0div
1*)( 









r

ss i q              (4.4.14) 

 
or, equivalently {▲Problem 1}, 
 
 

0)(
1

div
1

2
*)(  


qq

r
ss i        The Second Law      (4.4.15) 

 
This is the continuum statement of the Second Law. 
 
 
4.4.3 The Dissipation Inequality 
 
Eliminating qdiv  (and r) from both the first and second laws leads to the dissipation 
inequality 
 

  0)(
1

:
1*)(  


 qdσuss i   Dissipation Inequality      (4.4.16) 
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The term *)(is  is the specific dissipation (or internal dissipation) and is denoted by the 
symbol  .  The Clausius-Duhem inequality can simply be written as 
 

0)*(  is                   (4.4.17) 
 

Multiplying Eqn. 4.4.16 across by the density leads to 
 

          0)(
1

:*)( 



  


 qdσuss i              (4.4.18) 

 
Each term here has units of power per unit (current) volume.  The term inside the first 
bracket is called the mechanical dissipation (per unit volume).  The term inside the 
second bracket is the dissipation due to temperature gradients, i.e. heat flow, and is called 
the thermal dissipation (per unit volume).  Note that the thermal dissipation will always 
be positive if q and   are of opposite sign.  Integrating over a volume v leads to 
 

    dvdvsudvs
vvv

i  





  qdσ 


 1

:)*(                     (4.4.19) 

 
 
 
 
 
The term *)(is  in Eqn. 4.4.18 is often denoted by the symbol   and also termed the 
dissipation.  This is a dissipation per unit volume.  When the deformations are small, the 
volume changes are negligible.   When the deformations are appreciable, however, the 
volume and density change, and it is better to work with specific quantities such as  .  
 
The dissipation inequality 4.4.16 is in terms of the internal energy.  In terms of the 
specific free energy  su  , one has 
 

  0)(
1

:
1*)(  


 qdσss i                (4.4.20) 

 
 
4.4.4 The Clausius-Plank Inequality 
 
In many applications the thermal dissipation is very much smaller than the mechanical 
dissipation (in fact it is zero in many important applications – see section 4.4.7 below).  If 
this is the case then the thermal dissipation rate can be ignored, and one has the stronger 
form of the second law, in terms of internal energy and free energy, 
 

mechanical 
dissipation 

thermal 
dissipation 

dissipation 
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 
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
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
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



s

us

   Clausius-Plank inequality    (4.4.21) 

 
which is known as the Clausius-Plank inequality.  
 
Equivalently, one can argue that the processes of mechanical dissipation and heat flow are 
independent, so that each are separately required to be non-negative, again leading to 
Eqn. 4.4.21.  This issue will be explored more fully in Part IV, where it will indeed be 
shown that the thermal dissipation is very often decoupled from the mechanical 
dissipation, with both being required to be separately positive. 
 
Using the first law, Eqn. 4.4.21 can be rewritten in the alternative form 
 

qdiv
11


  rs                                                (4.4.22) 

 
which is an evolution equation for s (showing how it evolves over time). 
 
 
4.4.5 Special Thermodynamic Processes 
 
Some important limiting processes are considered next. 
  
Reversible Processes 
 
In a reversible process, 0)*(  is .  The Clausius-Plank inequality now becomes 
 

 dσ :
1


  su       or      dσ :

1


   s                      (4.4.23) 

 
From the First Law, 
 

div
s


 

q                                                    (4.4.24) 

 
This is the entropy supply (with zero temperature gradients) and corresponds to the 
classical thermodynamic (for which, also, 0  ) expression  /)( QdS r  . 
 
Isentropic Conditions 
 
For an isentropic process, the entropy is constant and remains constant, so 0s .  In this 
case, the dissipation is 
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  0)(
1

:
1

 


 qdσu                 (4.4.25) 

 
Isothermal Conditions 
 
In an isothermal process, the absolute temperature remains constant, 0 .  This can be 
achieved, for example, by keeping the material’s surroundings at constant temperature, 
and loading the material very slowly, so that any temperature differences which arise 
between the material and surroundings are allowed to disappear. 
 
The Clausius-Plank inequality becomes 
 

  0:
1

 dσ


 us     or     0:
1

 dσ


                 (4.4.26) 

 
Equilibrium Conditions 
 
As mentioned in §4.2.3, a material which is unaffected by external conditions has no 
work done to it or heat supplied and the first law then states that the internal energy is 
constant.  In that case, when the entropy has reached a maximum and the dissipation is 
zero, there is no more change in any of the state variables, and equilibrium has been 
reached. 
 
Adiabatic Conditions 
 
In an adiabatic process, oq  .  This can be achieved, for example, by very rapid loading, 
so that there is no time for heat exchange with the surroundings. 
 
Under these conditions (and taking also 0r ), the first law reads u: dσ  (recall that 
the internal energy change is equal to the work done in an adiabatic process).  The 
dissipation inequality reduces to 
 

0*)(  ss i            (4.4.27) 
 
or 
 

0 s                     (4.4.28) 
 
If the process is both adiabatic and isentropic, then 0 s .  An adiabatic reversible 
process is equivalent to an isentropic reversible process. 
 
 
4.4.6 Summary 
 
A summary of the thermomechanical theory, showing the various laws and relations 
which are involved, and how they are interconnected, is given in Fig. 4.4.2 below. 
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Figure 4.4.2: Thermomechanics 
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4.4.7 The use of Thermomechanics in Developing Material 

Models 
 
Material models and the consequences of the laws of thermomechanics will be discussed 
in depth in Part IV.  Here, as an introduction, the case of small-strain elastic/thermoelastic 
materials will be touched upon briefly. 
 
The classical thermodynamic expression for the work done to a system is W pdV   .  
This was generalised to the continuum statement for the power exerted on an infinitesimal 
element, :σ d .  In the same way, the kinematic variable of the classical thermodynamic 
system, V, is generalised to the case of a continuum by considering the state to be a 
function of the strains.  
 
When the strains are small, the rate of deformation is equivalent to the time rate of change 
of the small strain tensor: 
 

 εd  ,             ijijd          (4.4.29) 

 
The dissipation inequalities are then 
 

0
11

,  iiijij qus 





  ,      0
1

:
1

 


 qεσ  us  

                                                                      or 

0
11

,  iiijij qs 





  ,    0
1

:
1

 


 qεσ s  

(4.4.30) 
 
Reversible Process 
 
In the case of reversible processes: 
 

,

1 1
0ij ij i is u q   

 
     ,      

1 1
: 0s u 

 
    σ ε q    

                                                                      or 

,

1 1
0ij ij i is q    

 
       ,          

1 1
: 0s  

 
     σ ε q    

                    (4.4.31) 
 
Consider now a material whose state is completely defined by the set of state variables 
( , )ij  , so the free energy state function is ),( ij  .  This defines the thermoelastic 

material.  The internal energy is expressed in canonical form as  ),( ijsuu   (see section 

4.3).  One then has 
 

ij
ij

u
s

s

u
u 











        and        ij
ij






 








                     (4.4.32) 
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Thus 
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σ ε q

ε
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                     (4.4.33) 
 
Consider now the free energy equation here (the argument which follows applies also to 
the internal energy equation).  The state variables are ( , )ij   and the other properties are 

state functions of these variables; these include all the terms inside the brackets, that is, 
, , ijs    and also the partial derivatives.  For any particular state, these properties will 

have certain values.  On the other hand, no matter the state, the variables ,, ,ij i     can (in 

theory) be assigned arbitrary values: negative, zero or positive.  The terms which pre-

multiply , ij    are completely independent of these variables – indeed, this fact is built 

into the model under consideration: the state is a function of ( , )ij   only and is not, for 

example, dependent on the values of ,, ,ij i    .  On the other hand, q is not a state function 

and in fact may be a function of the temperature gradients.  The only way that Eqn. 4.4.33 
can be satisfied in general, then, is for  
 

0                                                       (4.4.34) 
 
and the following relations must hold (compare these with 4.3.3 and 4.3.8): 
 

ij
ij

u

s

u










 ,      and     
ij

ijs













 ,               (4.4.35) 

Constitutive Relations for Small-Strain Reversible Processes 
 
Note that the density (and volume) changes for small strains may be neglected, so that the 
density in 4.4.35 can be taken to be the current density or the density in the undeformed 
configuration, 0 . 
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4.4.8 Thermomechanics in the Material Form 
 
The dissipation inequality is derived here for the case of the material description. 
 
The First Law 
 
In order to rewrite the energy balance equations in material form, first introduce the 
scalars (what follows is analogous to the definitions of traction and stress with respect to 
the current and reference configurations) 
 

NQ

nq
N

n




)(

)(

Q

q
               (4.4.36) 

 
Here q is the Cauchy heat flux of Eqn. 4.4.4, defined per unit current surface area ds  
with outward normal n, and Q the Piola-Kirchhoff heat flux, defined per unit reference 
surface area dS  and outward normal N. 
 
The rate of heat transfer into the material can now be written as either of 
 

dSds
Ss
  NQnq        (4.4.37) 

 
Using Nanson’s formula, Part III, Eqn. 2.2.59, dSJds NFn T , the Cauchy and Piola-
Kirchhoff heat flux vectors are related through qFQ 1 J . 
 
The combination of the mechanical energy balance with the first law, i.e. Eqn. 4.4.3, then 
reads (see also Part III, Eqn. 3.8.26) 
 

   
VV V V

dVdVRdVdV uDiv: 0  QFP             (4.4.38) 

 

where dvrdVR
vV   , or, in local form, 

 
uDiv: 0   RQFP     (4.4.39) 

 
or 
 

uDiv: 0   RQES     (4.4.40) 

 
Note that, comparing the spatial and material forms,  
 

qQqQqQ div
1

Div
1

,divDiv,divDiv
0 

  JdvdV
vV

             (4.4.41) 
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The Second Law 
 
Analogous to Eqn. 4.4.13, the second law can be expressed in material form as 
 

0Div0 





 

VVV

dV
R

dVdVs
dt

d


 Q

         (4.4.42) 

 
or, analogous to 4.4.16, one has the dissipation inequality  
 

  0)Grad(
1

:
1

00

*)(  


 QFP  uss i              (4.4.43) 

 
Isothermal Conditions 
 
In an isothermal process,  
 

  0:
1

0

 FP 


 us    or     0:
1

0

 FP 


              (4.4.44) 

 
The second of these can be written as 

0 0:     P F       with      0               (4.4.45) 

where the rate of free energy  0   and the dissipation  0  are per unit reference 

volume. 
 
 
4.4.9 Objectivity 
 
By definition, the scalars heat Q, internal energy U, entropy S and temperature   are 
objective, that is they remain unchanged under an observer transformation 2.8.7.  It 
follows that the heat flux vector q is also objective, transforming according to 2.8.10.  By 
definition, the vector entropy flux qs  is objective,  that is it transforms according to 

2.8.10.   
 
 
4.4.10 Problems 
 

1. Show that )(
1

div
1

div
2












qq
q

 

 
2. Show that the relation qFQ 1 J  is consistent with the relation 4.4.41, 

qQ divDiv J . 
 
 
 


