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4.3 Thermodynamic Functions 
 
Four important and useful thermodynamic functions will be considered in this section 
(two of them have been encountered in the previous sections).  These are the internal 
energy U, the enthalpy H, the Helmholtz free energy (or simply the free energy)   
and the Gibbs free energy (or simply the Gibbs function) G.  These functions will be 
defined and examined below for both reversible and irreversible processes. 
 
 
4.3.1 Reversible Processes 
 
Consider first a reversible process. 
 
The Internal Energy 
 
The internal energy is 
 

dSpdV

QWdU






        (4.3.1) 

 
the second line being valid for quasi-static processes.  The properties of a pure 
compressible substance include SV ,,  and p.  From 4.3.1, it is natural to take V and S as 
the state variables: 
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so that  
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Thus ),( SVU  contains all the thermodynamic information about the system; given V and 
S one has an expression for U and can evaluate p and   through differentiation.  U is a 
thermodynamic potential, meaning that it provides information through a 
differentiation. 
 
V and S are said to be the canonical (natural) state variables for U.  By contrast, 
expressing the internal energy as a function of the volume and temperature, for example, 

),( VUU  , is not so useful, since this cannot provide all the necessary information 
regarding the state of the material.  A new state function will be introduced below which 
has V and   as canonical state variables. 
 
Similarly, the equation of state ),( pV  does not contain all the thermodynamic 
information.  For example, there is no information about U or S, and this equation of state 
must be supplemented by another, just as the ideal gas law is supplemented by the caloric 
equation of state )(UU  . 
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Returning to the internal energy function, and taking the differential relations between 

,p  and U, Eqns. 4.3.3, and differentiating them again, and using the fact that 

VSUSVU  // 22 , one arrives at the Maxwell relation, 
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The Helmholtz Free Energy 
 
Define the (Helmholtz) free energy function through 
 

 SU              (4.3.5) 
 
One has 
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the second line being valid for reversible processes.  Now V and   have emerged as the 
natural state variables.  Writing ),( V , 
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so that  
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The Enthalpy and Gibbs Free Energy 
 
The enthalpy is defined by Eqn. 4.1.18, 
 

pVUH             (4.3.9) 
 
To determine the canonical state variables, evaluate the increment: 
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                           (4.3.10) 

 
and so 

 
VdpdSdH                                          (4.3.11) 
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and the natural variables are p and S .  Finally, the Gibbs free energy function is defined 
by 
 

pVSUG                          (4.3.12) 
 
and the canonical state variables are p and  . 
 
The definitions, canonical state variables and Maxwell relations for all four functions are 
summarised in Table 4.3.1 below. 
 

Thermo-
dynamic 
potential 

Symbol 
and 

appropriate 
variables 

Definition 
Differential 
relationship Maxwell relation 

Internal 
energy ),( VSU   dSpdVdU   

VS

SV

S

p

V

V

U
p

S

U













































 ,
 

Enthalpy ),( pSH  pVUH   dSVdpdH   

pS

Sp

S

V

p

p

H
V

S

H















































 ,
 

Helmholtz 
free 

energy 
),( V  SU   SdpdVd   

V

V

p

V

S
V

pS



















































,

Gibbs free 
energy 

),( pG   pVSUG    SdVdpdG   

p

p

V

p

S
p

G
V

G
S





















































,
 

Table 4.3.1: Thermodynamic Potential Functions and Maxwell relations 
 
Mechanical variables: whereas the internal energy and the Helmholtz free energy are 
functions of a kinematic variable (V), the enthalpy and the Gibbs function are functions of 
a force variable (p). 
 
Thermal variables: whereas the internal energy and the enthalpy are functions of the 
entropy, the Helmholtz and Gibbs free energy functions are functions of the temperature. 
 
If one is analyzing a process with, for example, constant temperature, it makes sense to 
use either the Helmholtz or Gibbs free energy functions, so that there is only one variable 
to consider. 
 
Note that the temperature is an observable property and can be controlled to some extent.  
Values for the entropy, on the other hand, cannot be assigned arbitrary values in 
experiments.  For this reason a description in terms of the free energy, for example, is 
often more useful than a description in terms of the internal energy. 
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4.3.2 Irreversible Processes 
 
Consider now an irreversible process. 
 
The Internal Energy 
 
One has )(iSdSdUW    and, with the internal energy again a function of the 
entropy and volume, 
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Consider the case of pure heating 0)(  iSdVW  , so  
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as in the reversible case.  This relation between properties is of course valid for any 
process, not necessarily a pure heating one.  Thus 
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Express the work in the form 
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such that the quasi-conservative force )(qA  is that associated with the work )(qW   which 
is recoverable, whilst the dissipative force dA  produces the work )(dW  which is 
dissipated, i.e. associated with irreversibilities. 
 
From 4.3.15,  
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and the dissipative work )(dW  is 
 

0)()()(  idd SdVAW         (4.3.18) 
 
The name quasi-conservative force for the )(qA  (here, actually a force per area) is in 
recognition that the internal energy plays the role of a potential in 4.3.17, but it is also a 
function of the entropy.  It can be seen from Eqn. 4.3.17 that the quasi-conservative force 
is a state function, and equals p  in a fully reversible process. 
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In the isentropic case, 0dS  , and one has 
 

( )iW dU S                 (4.3.19) 
 
This shows that, in the isentropic case, the internal energy is that part of the work which 
is recoverable. 
 
The Free Energy 
 
Directly from SU  , with   and V the independent variables, 
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From the pure heating analysis given earlier, Eqn. 4.2.9-10, the term   // SU  
is zero, so 
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as in the reversible case and  
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The work can now be written again as Eqn. 4.3.16, but now with the quasi-conservative 
force given by {▲Problem 3} 
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The dissipative work is again given by 4.3.18.  Also, pA q )(  for a reversible process. 
 
In the isothermal case, 0d , 
 

)(iSdW                 (4.3.24) 
 
This shows that, in the isothermal case, the free energy is that part of the work which is 
recoverable. 
 
The quasi-conservative forces for the internal energy and free energy are listed in Table 
4.3.2.  Note that expressions for quasi-conservative forces are not available in the case of 
the Enthalpy and Gibbs free energy since they do not permit in their expression 
increments in volume dV , which are required for expressions of work increment. 
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Thermo-dynamic potential Differential relationship Relations 
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Table 4.3.2: Quasi-Conservative Forces for Irreversible Processes,  
pdVSdVAW iq  )()(   

 
 
4.3.3 The Legendre Transformation 
 
The thermodynamic functions can be transformed into one another using a mathematical 
technique called the Legendre Transformation.  The Legendre Transformation is 
discussed in detail in Part IV, where it plays an important role in Plasticity Theory, and 
other topics.  For the present purposes, note that the Legendre transformation of a 
function ),( yxf  is the function ),( g  where 
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When only one of the two variables is switched, the transform reads 
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For example, if one has the function ),( VSU  and wants to switch the independent 
variable from S to  , Eqn. 4.3.27 leads one to consider the new function 
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and Eqns. 4.3.28 give 
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It can be seen that ),( Vg   is the negative of the Helmholtz free energy and the two 
differential relations in 4.3.30 are contained in Table 4.3.1. 
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4.3.4 Problems 
 
1. By considering reversible processes, derive the differential relationships and the 

Maxwell relations given in Table 4.3.1 for (a) the enthalpy, (b) the Gibbs free energy 
 
2. Let the two independent variables be V and  .  Consider the internal energy, 

),( VUU  .  Use the pure heating example considered in §4.2 to show that the 
quasi-conservative force of Eqn. 4.3.17 can also be expressed as 
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3. Show that Eqn. 4.3.22 leads to Eqn. 4.3.23. 
 
4. Use the Legendre Transformation rule to transform the Helmholtz free energy 

),( V  into a function of the variables   and  .  Derive also the two differential 
relations analogous to Eqns. 4.3.30.  Show that this new function is the negative of the 
Gibbs energy (use the relation SU  ), where p , and that the two 
differential relations correspond to two of the relations in Table 4.3.1. 

 
5. Use the Legendre Transformation rule to transform the enthalpy ),( pSH  into a 

function of the variables S  and V .  Show that this new function is the negative of the 
internal energy, and that the two differential relations correspond to two of the 
relations in Table 4.3.1. 

 


