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3 Stress and the 
Balance Principles 

 
Three basic laws of physics are discussed in this Chapter: 
 

(1) The Law of Conservation of Mass 
(2) The Balance of Linear Momentum 
(3) The Balance of Angular Momentum 

 
together with the conservation of mechanical energy and the principle of virtual work, 
which are different versions of (2). 
  
(2) and (3) involve the concept of stress, which allows one to describe the action of 
forces in materials. 
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3.1 Conservation of Mass 
 
 
3.1.1 Mass and Density 
 
Mass is a non-negative scalar measure of a body’s tendency to resist a change in motion. 
 
Consider a small volume element vΔ  whose mass is mΔ .  Define the average density of 
this volume element by the ratio 
 

v
m
Δ
Δ

=AVEρ               (3.1.1) 

 
If p is some point within the volume element, then define the spatial mass density at p to 
be the limiting value of this ratio as the volume shrinks down to the point, 
 

v
mt v Δ

Δ
= →Δ 0lim),(xρ      Spatial Density                 (3.1.2) 

 
In a real material, the incremental volume element vΔ  must not actually get too small 
since then the limit ρ  would depend on the atomistic structure of the material; the 
volume is only allowed to decrease to some minimum value which contains a large 
number of molecules.  The spatial mass density is a representative average obtained by 
having vΔ  large compared to the atomic scale, but small compared to a typical length 
scale of the problem under consideration. 
 
The density, as with displacement, velocity, and other quantities, is defined for specific 
particles of a continuum, and is a continuous function of coordinates and time, 

),( txρρ = .  However, the mass is not defined this way – one writes for the mass of an 
infinitesimal volume of material – a mass element, 
 

dvtdm ),(xρ=        (3.1.3) 
 
or, for the mass of a volume v of material at time t, 
 

( )∫=
v

dvtm ,xρ                   (3.1.4) 

 
 
3.1.2 Conservation of Mass 
 
The law of conservation of mass states that mass can neither be created nor destroyed.   
 
Consider a collection of matter located somewhere in space.  This quantity of matter with 
well-defined boundaries is termed a system.  The law of conservation of mass then 
implies that the mass of this given system remains constant,  
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0=
Dt
Dm

          Conservation of Mass               (3.1.5) 

 
The volume occupied by the matter may be changing and the density of the matter within 
the system may be changing, but the mass remains constant. 
 
Considering a differential mass element at position X in the reference configuration and 
at x in the current configuration, Eqn. 3.1.5 can be rewritten as 
 

),()( tdmdm xX =          (3.1.6) 
 
The conservation of mass equation can be expressed in terms of densities.  First, 
introduce 0ρ , the reference mass density (or simply the density), defined through 
 

V
m

V Δ
Δ

= →Δ 00 lim)(Xρ       Density             (3.1.7) 

 
Note that the density 0ρ  and the spatial mass density ρ  are not the same quantities1.   
 
Thus the local (or differential) form of the conservation of mass can be expressed as (see 
Fig. 3.1.1) 
 

const),()(0 === dvtdVdm xX ρρ        (3.1.8) 
 

 
 

Figure 3.1.1: Conservation of Mass for a deforming mass element 
 
Integration over a finite region of material gives the global (or integral) form, 

 
const),()(0 === ∫∫

vV

dvtdVm xX ρρ        (3.1.9) 

or 
 

0),( === ∫
v

dvt
dt
d

dt
dmm xρ&            (3.1.10) 

                                                 
1 they not only are functions of different variables, but also have different values; they are not different 
representations of the same thing, as were, for example, the velocities v and V.  One could introduce a 
material mass density, )),,((),( ttXxtX ρ=Ρ , but such a quantity is not useful in analysis 

reference 
configuration 

X
x

0, ρdV ρ,dv

•
•

current 
configuration 
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3.1.3 Control Mass and Control Volume 
 
A control mass is a fixed mass of material whose volume and density may change, and 
which may move through space, Fig. 3.1.2.  There is no mass transport through the 
moving surface of the control mass.  For such a system, Eqn. 3.1.10 holds. 
 

 
 

Figure 3.1.2: Control Mass 
 
By definition, the derivative in 3.1.10 is the time derivative of a property (in this case 
mass) of a collection of material particles as they move through space, and when they 
instantaneously occupy the volume v, Fig. 3.1.3, or 
 

0),(),(1lim
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0 =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−Δ+
Δ

= ∫ ∫∫
Δ+

→Δ
ttv tv

t
dv

dvtdvtt
t

dv
dt
d xx ρρρ    (3.1.11) 

 
Alternatively, one can take the material derivative inside the integral sign: 
 

[ ] 0),( == ∫
v

dvt
dt
d

dt
dm xρ        (3.1.12) 

 
This is now equivalent to the sum of the rates of change of mass of the mass elements 
occupying the volume v. 
 

 
 

Figure 3.1.3: Control Mass occupying different volumes at different times 
 
 
A control volume, on the other hand, is a fixed volume (region) of space through which 
material may flow, Fig. 3.1.4, and for which the mass may change.  For such a system, 
one has 
 

)(),),((, 111 tvttm xρ )(),),((, 222 tvttm xρ

time t  

time tt Δ+  
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[ ] 0),(),( ≠
∂
∂

=
∂
∂

=
∂
∂

∫∫ dvt
t

dvt
tt

m

vv

xx ρρ                          (3.1.13) 

 

 
 

Figure 3.1.4: Control Volume 
 
 
3.1.4 The Continuity Equation (Spatial Form) 
 
A consequence of the law of conservation of mass is the continuity equation, which (in 
the spatial form) relates the density and velocity of any material particle during motion.  
This equation can be derived in a number of ways: 
 
Derivation of the Continuity Equation using a Control Volume (Global Form) 
 
The continuity equation can be derived directly by considering a control volume - this is 
the derivation appropriate to fluid mechanics.  Mass inside this fixed volume cannot be 
created or destroyed, so that the rate of increase of mass in the volume must equal the rate 
at which mass is flowing into the volume through its bounding surface. 
 
The rate of increase of mass inside the fixed volume v is 
 

∫∫ ∂
∂

=
∂
∂

=
∂
∂

vv

dv
t

dvt
tt

m ρρ ),(x              (3.1.14) 

 
The mass flux (rate of flow of mass) out through the surface is given by Eqn. 1.7.9,  
 

∫∫ ⋅
s

ii
s

dsnvds ρρ ,nv  

 
where n is the unit outward normal to the surface and v is the velocity.  It follows that 
 

0,0 =+
∂
∂

=⋅+
∂
∂

∫∫∫∫
s

ii
vsv

dsnvdv
t

dsdv
t

ρρρρ nv           (3.1.15) 

 
Use of the divergence theorem 1.7.12 leads to 
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leading to the continuity equation, 
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    Continuity Equation 

(3.1.17) 
 
This is (these are) the continuity equation in spatial form.  The second and third forms of 
the equation are obtained by re-writing the local derivative in terms of the material 
derivative 2.4.7 (see also 1.6.23b). 
 
If the material is incompressible, so the density remains constant in the neighbourhood of 
a particle as it moves, then the continuity equation reduces to 
 

0,0div =
∂
∂

=
i

i

x
v

v   Continuity Eqn. for Incompressible Material   (3.1.18) 

 
Derivation of the Continuity Equation using a Control Mass 
 
Here follow two ways to derive the continuity equation using a control mass. 
 
1. Derivation using the Formal Definition 
 
From 3.1.11, adding and subtracting a term: 
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    (3.1.19) 

 
The terms in the second square bracket correspond to holding the volume v fixed and 
evidently equals the local rate of change: 
 

∫∫∫
−Δ+

→Δ
Δ+

Δ
+

∂
∂

=
)()(

0
),(1lim

tvttv
t

vdv

dvtt
t

dv
t

dv
dt
d xρρρ                     (3.1.20) 

 
The region )()( tvttv −Δ+  is swept out in time tΔ .  Superimposing the volumes )(tv  and 

)( ttv Δ+ , Fig. 3.1.5, it can be seen that a small element vΔ  of )()( tvttv −Δ+  is given by 
(see the example associated with Fig. 1.7.7) 
 

stv Δ⋅Δ=Δ nv                                                 (3.1.21) 
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where s is the surface.  Thus 
 

∫∫∫ ⋅=⋅Δ+Δ
Δ

=Δ+
Δ →Δ

−Δ+
→Δ

ss
t

tvttv
t

dstdsttt
t

dvtt
t

nvxnvxx ),(),(1lim),(1lim
0

)()(
0

ρρρ    (3.1.22) 

 
and 3.1.15 is again obtained, from which the continuity equation results from use of the 
divergence theorem.  
 

 
 

Figure 3.1.5: Evaluation of Eqn. 3.1.22 
 
 
2. Derivation by Converting to Mass Elements 
 
This derivation requires the kinematic relation for the material time derivative of a 
volume element, 2.5.23: dvdtdvd vdiv/)( = .  One has 
 

( ) ( ) 0div),(
.

≡+=⎟⎟
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⎞
⎜⎜
⎝

⎛
+=== ∫∫∫∫

vvvv

dvdvdvdv
dt
ddvt

dt
d

dt
dm ρρρρρρ vx &&       (3.1.23) 

 
The continuity equation then follows, since this must hold for any arbitrary region of the 
volume v.  
 
Derivation of the Continuity Equation using a Control Volume (Local Form) 
 
The continuity equation can also be derived using a differential control volume element.  
This calculation is similar to that given in §1.6.6, with the velocity v replaced by vρ . 
 
 
3.1.5 The Continuity Equation (Material Form) 
 
From 3.1.9, and using 2.2.53, JdVdv = ,  
 

[ ] 0),()),,(()(0 =−∫
V

dVtJtt XXχX ρρ                    (3.1.24) 

 

)( ttv Δ+)(tv

)(ts
)( tts Δ+

n
vs

sΔ

vΔ



Section 3.1 

Solid Mechanics Part III  Kelly 323

Since V  is an arbitrary region, the integrand must vanish everywhere, so that 
 

),()),,(()(0 tJtt XXχX ρρ =   Continuity Equation (Material Form)   (3.1.25) 
 

This is known as the continuity (mass) equation in the material description.  Since 
00 =ρ& , the rate form of this equation is simply 

 

0)( =J
dt
d ρ              (3.1.26) 

 
The material form of the continuity equation, Jρρ =0 , is an algebraic equation, unlike 
the partial differential equation in the spatial form.  However, the two must be equivalent, 
and indeed the spatial form can be derived directly from this material form: using 2.5.20, 

vdiv/ JdtdJ = , 
 

( )vdiv

)(

ρρ

ρρρ

+=

+=

&

&&

J

JJJ
dt
d

        (3.1.27) 

 
This is zero, and 0>J , and the spatial continuity equation follows. 
 
Example (of Conservation of Mass) 
 
Consider a bar of material of length 0l , with density in the undeformed configuration 0ρ  
and spatial mass density ),( txρ , undergoing the 1-D motion )1/( At+= xX , 

XXx At+= .  The volume ratio (taking unit cross-sectional area) is AtJ += 1 .  The 
continuity equation in the material form 3.1.25 specifies that 
 

)1(0 At+= ρρ  
 
Suppose now that  
 

XX 2
0

2)(
l
m

o =ρ  

 

so that the total mass of the bar is ∫ =ol md
0 0 )( XXρ .  It follows that the spatial mass 

density is 
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Evaluating the total mass of the bar at time t leads to 
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which is again m, as required. 

 
 

 
 

Figure 3.1.6: a stretching bar 
 
 
The density could have been derived from the equation of continuity in the spatial form: 
since the velocity is  
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dt
tdt

+
==== −
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one has 
 

0
11

=
+

+
∂
∂

+
+

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

At
A

At
A

t
v

t
ρρρρρρ

x
x

xx
v  

 
Without attempting to solve this first order partial differential equation, it can be seen by 
substitution that the value for ρ  obtained previously satisfies the equation. 

■  
 
 
3.1.6 Material Derivatives of Integrals 
 
Reynold’s Transport Theorem 
 
In the above, the material derivative of the total mass carried by a control mass, 
 

∫
v

dvt
dt
d ),(xρ , 

 
was considered.  It is quite often that one needs to evaluate material time derivatives of 
similar volume (and line and surface) integrals, involving other properties, for example 
momentum or energy.  Thus, suppose that ),( txA  is the distribution of some property 
(per unit volume) throughout a volume v (A is taken to be a second order tensor, but what 
follows applies also to vectors and scalars).  Then the rate of change of the total amount 
of the property carried by the mass system is 
 

end of bar ( 0l== Xx ) 
at 0=t  

end of bar ( 00 ),1( lAtl =+= Xx ) 
at time t
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∫
v

dvt
dt
d ),(xA  

 
Again, this integral can be evaluated in a number of ways.  For example, one could 
evaluate it using the formal definition of the material derivative, as done above for 

ρ=A .  Alternatively, one can evaluate it using the relation 2.5.23,  dvdtdvd vdiv/)( = , 
through 
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Thus one arrives at Reynold’s transport theorem 
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 Reynold’s Transport Theorem    (3.1.29) 

 
The index notation is shown for the case when A is a second order tensor.  In the last of 
these forms2 (obtained by application of the divergence theorem), the first term represents 
the amount (of A) created within the volume v whereas the second term (the flux term) 
represents the (volume) rate of flow of the property through the surface.  In the last three 
versions, Reynold’s transport theorem gives the material derivative of the moving control 
mass in terms of the derivative of the instantaneous fixed volume in space (the first term). 
 
Of course when ρ=A , the continuity equation is recovered. 
 
Another way to derive this result is to first convert to the reference configuration, so that 
integration and differentiation commute (since dV  is independent of time): 
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2 also known as the Leibniz formula 
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Reynold’s Transport Theorem for Specific Properties  
 
A property that is given per unit mass is called a specific property.  For example, 
specific heat is the heat per unit mass.  Consider then a property B, a scalar, vector or 
tensor, which is defined per unit mass through a volume.  Then the rate of change of the 
total amount of the property carried by the mass system is simply 
 

[ ] [ ] ∫∫∫∫∫ ====
vvvvv

dv
dt
ddm

dt
ddm

dt
ddv

dt
ddvt

dt
d BBBBxB ρρρ ),(         (3.1.31) 

 
Material Derivatives of Line and Surface Integrals  
 
Material derivatives of line and surface integrals can also be evaluated.  From 2.5.8, 

xlx ddtdd =/)( , 
 

[ ]∫∫ += xAlAxxA ddt
dt
d &),(                  (3.1.32) 

 
and, using 2.5.22, ( ) ( ) dsdtdsd nlvn ˆdiv/ˆ T−= , 
 

( )[ ]∫∫ −+=
ss

dsdst
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d nlvAAnxA ˆdivˆ),( T&             (3.1.33) 

 
 
3.1.7 Problems 
 
1. A motion is given by the equations 

332
2

12211 ),1(,3 XxtXtXxtXXx =++−=+=  
(a) Calculate the spatial mass density ρ  in terms of the density 0ρ  
(b) Derive a first order ordinary differential equation for the density ρ  (in terms of 

x and t only) assuming that it is independent of position x 
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3.2 The Momentum Principles 
 
In Parts I and II, the basic dynamics principles used were Newton’s Laws, and these are 
equivalent to force equilibrium and moment equilibrium.  For example, they were used to 
derive the stress transformation equations in Part I, §3.4 and the Equations of Motion in 
Part II, §1.1.  Newton’s laws there were applied to differential material elements. 
 
An alternative but completely equivalent set of dynamics laws are Euler’s Laws; these 
are more appropriate for finite-sized collections of moving particles, and can be used to 
express the force and moment equilibrium in terms of integrals.  Euler’s Laws are also 
called the Momentum Principles: the principle of linear momentum (Euler’s first law) 
and the principle of angular momentum (Euler’s second law). 
 
 
3.2.1 The Principle of Linear Momentum 
 
Momentum is a measure of the tendency of an object to keep moving once it is set in 
motion.  Consider first the particle of rigid body dynamics: the (linear) momentum p is 
defined to be its mass times velocity, vp m= .  The rate of change of momentum p&  is 
 

avvp m
dt
dm

dt
md

dt
d

===
)(     (3.2.1) 

 
and use has been made of the fact that 0/ =dtdm .  Thus Newton’s second law, aF m= , 
can be rewritten as 
 

)( vF m
dt
d

=      (3.2.2) 

 
This equation, formulated by Euler, states that the rate of change of momentum is equal to 
the applied force.  It is called the principle of linear momentum, or balance of linear 
momentum.  If there are no forces applied to a system, the total momentum of the system 
remains constant; the law in this case is known as the law of conservation of (linear) 
momentum. 
 
Eqn. 3.2.2 as applied to a particle can be generalized to the mechanics of a continuum in 
one of two ways.  One could consider a differential element of material, of mass dm  and 
velocity v.  Alternatively, one can consider a finite portion of material, a control mass in 
the current configuration with spatial mass density ),( txρ  and spatial velocity field 

),( txv .  The total linear momentum of this mass of material is 
 

( )∫=
v

dvttt ,),()( xvxL ρ     Linear Momentum    (3.2.3) 

 
The principle of linear momentum states that 
 

( ) )(,),()( tdvtt
dt
dt

v
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where )(tF  is the resultant of the forces acting on the portion of material. 
 
Note that the volume over which the integration in Eqn. 3.2.4 takes place is not fixed; the 
integral is taken over a fixed portion of material particles, and the space occupied by this 
matter may change over time. 
 
By virtue of the Transport theorem relation 3.1.31, this can be written as 
 

( ) )(,),()( tdvttt
v

FxvxL == ∫ && ρ           (3.2.5) 

 
The resultant force acting on a body is due to the surface tractions t acting over surface 
elements and body forces b acting on volume elements, Fig. 3.2.1: 
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∫∫∫∫ +=+= ,)( btF        Resultant Force     (3.2.6) 

 
and so the principle of linear momentum can be expressed as 
 

∫∫∫ =+
vvs

dvdvds vbt &ρ      Principle of Linear Momentum      (3.2.7) 

 
 

 
 

Figure 3.2.1: surface and body forces acting on a finite volume of material 
 
The principle of linear momentum, Eqns. 3.2.7, will be used to prove Cauchy’s Lemma 
and Cauchy’s Law in the next section and, in §3.6, to derive the Equations of Motion. 
 
 
3.2.2 The Principle of Angular Momentum 
 
Considering again the mechanics of a single particle: the angular momentum is the 
moment of momentum about an axis, in other words, it is the product of the linear 
momentum of the particle and the perpendicular distance from the axis of its line of 
action.  In the notation of Fig. 3.2.2, the angular momentum h is 
 

vrh m×=                                                           (3.2.8) 
 
which is the vector with magnitude vmd ×  and perpendicular to the plane shown. 
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ds
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dv
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Figure 3.2.2: surface and body forces acting on a finite volume of material 

 
Consider now a collection of particles.  The principle of angular momentum states that 
the resultant moment of the external forces acting on the system of particles, M , equals 
the rate of change of the total angular momentum of the particles: 
 

dt
dhFrM =×=                                                (3.2.9) 

 
Generalising to a continuum, the angular momentum is 
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and the principle of angular momentum is 
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   Principle of Angular Momentum      

(3.2.11) 
 
The principle of angular momentum, 3.2.11, will be used, in §3.6, to deduce the 
symmetry of the Cauchy stress. 
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3.3 The Cauchy Stress Tensor 
 
 
3.3.1 The Traction Vector 
 
The traction vector was introduced in Part I, §3.3.  To recall, it is the limiting value of 
the ratio of force over area; for Force FΔ  acting on a surface element of area SΔ , it is 
 

S
F

S Δ
Δ

=
→Δ 0

)( limnt                                                       (3.3.1) 

 
and n denotes the normal to the surface element.  An infinite number of traction vectors 
act at a point, each acting on different surfaces through the point, defined by different 
normals. 
 
 
3.3.2 Cauchy’s Lemma 
 
Cauchy’s lemma states that traction vectors acting on opposite sides of a surface are 
equal and opposite1.  This can be expressed in vector form: 
 

)()( nn tt −−=  Cauchy’s Lemma      (3.3.2) 
 
This can be proved by applying the principle of linear momentum to a collection of 
particles of mass mΔ  instantaneously occupying a small box with parallel surfaces of 
area sΔ , thickness δ  and volume sv Δ=Δ δ , Fig. 3.3.1.  The resultant surface force 
acting on this matter is ss Δ+Δ − )()( nn tt . 
 

 
 

Figure 3.3.1: traction acting on a small portion of material particles 
 
The total linear momentum of the matter is ∫∫ ΔΔ

=
mV

dmdv vvρ .  By the mean value 

theorem (see Appendix A to Chapter 1, §1.B.1), this equals mΔv , where v  is the velocity 
at some interior point.  Similarly, the body force acting on the matter is vdv

V
Δ=∫Δ bb , 

where b  is the body force (per unit volume) acting at some interior point.  The total mass 

                                                 
1 this is equivalent to Newton’s (third) law of action and reaction – it seems like a lot of work to prove this 
seemingly obvious result but, to be consistent, it is supposed that the only fundamental dynamic laws 
available here are the principles of linear and angular momentum, and not any of Newton’s laws 

)(nt

)( nt −

n

n−

sΔ

thickness δ  
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can also be written as vdvm
V

Δ==Δ ∫Δ ρρ .  From the principle of linear momentum, 

Eqn. 3.2.7, and since mΔ  does not change with time, 
 

[ ]
dt
ds

dt
dv

dt
dmm

dt
dvss vvvvbtt nn Δ=Δ=Δ=Δ=Δ+Δ+Δ − δρρ)()(              (3.3.3) 

 
Dividing through by sΔ  and taking the limit as 0→δ , one finds that )()( nn tt −−= . 
Note that the values of )()( , nn tt −  acting on the box with finite thickness are not the same 
as the final values, but approach the final values at the surface as 0→δ . 
 
 
3.3.3 Stress 
 
In Part I, the components of the traction vector were called stress components, and it was 
illustrated how there were nine stress components associated with each material particle.  
Here, the stress is defined more formally, 
 
Cauchy’s Law 
 
Cauchy’s Law states that there exists a Cauchy stress tensor σ  which maps the normal 
to a surface to the traction vector acting on that surface, according to 
 

jiji nt σ== ,nσt        Cauchy’s Law                   (3.3.4) 
 
or, in full, 
 

3332321313

3232221212

3132121111

nnnt
nnnt

nnnt

σσσ
σσσ
σσσ

++=
++=
++=

       (3.3.5) 

 
Note: 
• many authors define the stress tensor as σnt = .  This amounts to the definition used here 

since, as mentioned in Part I, and as will be (re-)proved below, the stress tensor is symmetric, 

jiij σσ == ,Tσσ  
• the Cauchy stress refers to the current configuration, that is, it is a measure of force per unit 

area acting on a surface in the current configuration. 
 
Stress Components 
 
Taking Cauchy’s law to be true (it is proved below), the components of the stress tensor 
with respect to a Cartesian coordinate system are, from 1.9.4 and 3.3.4, 
 

( )j
ijiij

eteeσe ⋅==σ                                                (3.3.6) 
 
which is the ith component of the traction vector acting on a surface with normal je .  
Note that this definition is inconsistent with that given in Part I, §3.2 – there, the first 
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subscript denoted the direction of the normal – but, again, the two definitions are 
equivalent because of the symmetry of the stress tensor.  
 
The three traction vectors acting on the surface elements whose outward normals point in 
the directions of the three base vectors je  are 
 

j
j eσt e =)( ,           

( )

( )

( )
33322313

33222212

33122111

3

2

eeet

eeet

eeet

1
e

1
e

1
e1

σσσ

σσσ

σσσ

++=

++=

++=

      (3.3.7) 

 
Eqns. 3.3.6-7 are illustrated in Fig. 3.3.2. 
 

 
 
Figure 3.3.2: traction acting on surfaces with normals in the coordinate directions; 

(a) traction vectors, (b) stress components 
 
 
Proof of Cauchy’s Law 
 
The proof of Cauchy’s law essentially follows the same method as used in the proof of 
Cauchy’s lemma. 
 
Consider a small tetrahedral free-body, with vertex at the origin, Fig. 3.3.3.  It is required 
to determine the traction t in terms of the nine stress components (which are all shown 
positive in the diagram). 
 
Let the area of the base of the tetrahedran, with normal n, be sΔ .  The area 1ds  is then 

αcossΔ , where α  is the angle between the planes, as shown in Fig. 3.3.3b; this angle is 
the same as that between the vectors n and 1e , so ( ) snss Δ=Δ⋅=Δ 111 en , and similarly 
for the other surfaces: sns Δ=Δ 22  and sns Δ=Δ 33 . 
 

3x

2x

2e

3e

1e
( )1et

( )2et

( )3et

1x

21σ
11σ

31σ

12σ
22σ

32σ
23σ

33σ

13σ

3x

2x

1x

(a) (b) 
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Figure 3.3.3: free body diagram of a tetrahedral portion of material; (a) traction 
acting on the material, (b) relationship between surface areas and normal 

components 
 
The resultant surface force on the body, acting in the 1x  direction, is 
 

snsnsnst Δ−Δ−Δ−Δ 3132121111 σσσ  
 
Again, the momentum is MΔv , the body force is vΔb  and the  mass is 

shvm Δ=Δ=Δ )3/(ρρ , where h is the perpendicular distance from the origin (vertex) to 
the base.  The principle of linear momentum then states that 
 

dt
vd

shshbsnsnsnst 1
13132121111 )3/()3/( Δ=Δ+Δ−Δ−Δ−Δ ρσσσ  

 
Again, the values of the traction and stress components on the faces will in general vary 
over the faces, so the values used in this equation are average values over the faces. 
 
Dividing through by sΔ , and taking the limit as 0→h , one finds that  
 

3132121111 nnnt σσσ ++=  
 
and now these quantities, 1312111 ,,, σσσt , are the values at the origin.  The equations for 
the other two traction components can be derived in a similar way. 
 
Normal and Shear Stress 
 
The stress acting normal to a surface is given by 
 

)(ntn ⋅=Nσ                                                      (3.3.8) 
 
The shear stress acting on the surface can then be obtained from 

3x

2x

1x

n

( )nt

23σ
13σ

33σ

12σ
22σ

32σ
31σ

21σ
11σ 1sΔ

3sΔ

•
•

n

2sΔ α
1e

(a) (b) 
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22)(
NS σσ −= nt                                                  (3.3.9) 

 
Example 
 
The state of stress at a point is given in the matrix form 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=
123
221

312

ijσ        

 
Determine 
(a) the traction vector acting on a plane through the point whose unit normal is 

321 ˆ)3/2(ˆ)3/2(ˆ)3/1(ˆ eeen −+=  
(b) the component of this traction acting perpendicular to the plane 
(c) the shear component of traction. 
 
Solution 
 
(a) The traction is 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3
9
2

3
1

2
2
1

123
221

312

3
1

3

2

1

333231

232221

131211

)ˆ(
3

)ˆ(
2

)ˆ(
1

n
n
n

t
t
t

σσσ
σσσ
σσσ

n

n

n

   

 
or 321

)ˆ( ˆˆ3ˆ)3/2( eeet n −+−= . 
 
(b) The component normal to the plane is the projection of )ˆ(nt  in the direction of n̂ , i.e. 

 
.4.29/22)3/2()3/2(3)3/1)(3/2(ˆ)ˆ( ≈=++−=⋅= nt n

Nσ  
 

(c) The shearing component of traction is  
 

[ ] [ ] [ ][ ]
[ ]321

321

)ˆ(

ˆ)27/17(ˆ)27/37(ˆ)27/40(
ˆ)27/44(1ˆ)27/44(3ˆ)27/22()3/2(

ˆ)9/22(

eee
eee

nt n

++−=
+−+−+−−=

−=Sσ
 

 
      i.e. of magnitude 1.2)27/17()27/37()27/40( 222 ≈++− , which equals  

      22)ˆ(ˆ
Nσ−nt . 

■  
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3.4 Properties of the Stress Tensor 
 
 
3.4.1 Stress Transformation 
 
Let the components of the Cauchy stress tensor in a coordinate system with base vectors 

ie  be ijσ .  The components in a second coordinate system with base vectors je′ , ijσ ′ , are 
given by the tensor transformation rule 1.10.5: 
 

pqqjpiij QQ σσ =′                                                     (3.4.1) 
 
where ijQ  are the direction cosines, jiijQ ee ′⋅= . 
 
Isotropic State of Stress 
 
Suppose the state of stress in a body is 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0

0

0

00
00
00

σ
σ

σ
σ  

 
One finds that the application of the tensor transformation rule yields the very same 
components no matter what the coordinate system.  This is termed an isotropic state of 
stress, or a spherical state of stress (see §1.13.3).  One example of isotropic stress is the 
stress arising in fluid at rest, which cannot support shear stress, in which case 
 

Iσ p−=                                                            (3.4.2) 
 
where the scalar p is the fluid hydrostatic pressure.  For this reason, an isotropic state of 
stress is also referred to as a hydrostatic state of stress. 
 
A note on the Transformation Formula 
 
Using the vector transformation rule 1.5.5, the traction and normal transform according to 
[ ] [ ][ ] [ ] [ ][ ]nQntQt TT , =′=′ .  Also, Cauchy’s law transforms according to [ ] [ ][ ]nσt ′′=′  
which can be written as [ ][ ] [ ][ ][ ]nQσtQ TT ′= , so that, pre-multiplying by [ ]Q , and since 
[ ]Q  is orthogonal, [ ] [ ][ ][ ]{ }[ ]nQσQt T′= , so [ ] [ ][ ][ ]TQσQσ ′= , which is the inverse tensor 
transformation rule 1.13.6a, showing the internal consistency of the theory. 
 
In Part I, Newton’s law was applied to a material element to derive the two-dimensional 
stress transformation equations, Eqn. 3.4.7 of Part I.  Cauchy’s law was proved in a 
similar way, using the principle of momentum.  In fact, Cauchy’s law and the stress 
transformation equations are equivalent.  Given the stress components in one coordinate 
system, the stress transformation equations give the components in a new coordinate 
system; particularising this, they give the stress components, and thus the traction vector, 
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acting on new surfaces, oriented in some way with respect to the original axes, which is 
what Cauchy’s law does. 
 
 
3.4.2 Principal Stresses 
 
Since the stress σ  is a symmetric tensor, it has three real eigenvalues 321 ,, σσσ , called 
principal stresses, and three corresponding orthonormal eigenvectors called principal 
directions.  The eigenvalue problem can be written as 
 

nnσt n σ==)(                (3.4.3) 
 
where n is a principal direction and σ  is a scalar principal stress.  Since the traction 
vector is a multiple of the unit normal, σ  is a normal stress component.  Thus a principal 
stress is a stress which acts on a plane of zero shear stress, Fig. 3.4.1. 

 
 

Figure 3.4.1: traction acting on a plane of zero shear stress 
 
The principal stresses are the roots of the characteristic equation 1.11.5, 
 

032
2

1
3 =−+− III σσσ         (3.4.4) 

 
where, Eqn. 1.11.6-7, 1.11.17, 
 

( )[ ]
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322312
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1233

2
3122

2
2311332211
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2
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2
33

3
1

3

133221

2
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2
23

2
12113333222211
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2
1

2
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332211

1

2
det

trtrtrtr

trtr

tr

σσσ
σσσσσσσσσσσσ

σσσσσσ
σσσσσσσσσ

σσσ
σσσ

=
+−−−=

=

+−=

++=
−−−++=

−=

++=
++=

=

σ
σσσσ

σσ

σ

I

I

I

           (3.4.5) 

 

no shear stress – only a normal 
component to the traction 

n

332211
)( eeet n ttt ++=
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The principal stresses and principal directions are properties of the stress tensor, and do 
not depend on the particular axes chosen to describe the state of stress., and the stress 
invariants 321 ,, III  are invariant under coordinate transformation. c.f. §1.11.1.   
 
If one chooses a coordinate system to coincide with the three eigenvectors, one has the 
spectral decomposition 1.11.11 and the stress matrix takes the simple form 1.11.12, 
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⊗= ∑

=
3

2

13

1 00
00
00

,ˆˆ
σ

σ
σ

σ σnnσ
i

iii            (3.4.6) 

 
Note that when two of the principal stresses are equal, one of the principal directions will 
be unique, but the other two will be arbitrary – one can choose any two principal 
directions in the plane perpendicular to the uniquely determined direction, so that the 
three form an orthonormal set.  This stress state is called axi-symmetric.  When all three 
principal stresses are equal, one has an isotropic state of stress, and all directions are 
principal directions. 
 
 
3.4.3 Maximum Stresses 
 
Directly from §1.11.3, the three principal stresses include the maximum and minimum 
normal stress components acting at a point.  This result is re-derived here, together with 
results for the maximum shear stress 
 
Normal Stresses 
 
Let 321 ,, eee  be unit vectors in the principal directions and consider an arbitrary unit 
normal vector 332211 eeen nnn ++= , Fig. 3.4.2.  From 3.3.8 and Cauchy’s law,  the 
normal stress acting on the plane with normal n is 
 

( ) nnσnt n ⋅=⋅= )(
Nσ            (3.4.7) 

 

 
 

Figure 3.4.2: normal stress acting on a plane defined by the unit normal n 
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n

( )ntNσ

principal 
directions 
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With respect to the principal stresses, using 3.4.6, 
  

333222111
)( eeenσt n nnn σσσ ++==                     (3.4.8) 

 
and the normal stress is 
 

2
33

2
22

2
11 nnnN σσσσ ++=                                   (3.4.9) 

 
Since 12

3
2
2

2
1 =++ nnn  and, without loss of generality, taking 321 σσσ ≥≥ , one has 

 
( ) Nnnnnnn σσσσσσ =++≥++= 2

33
2
22

2
11

2
3

2
2

2
111      (3.4.10) 

 
Similarly, 
 

( ) 3
2
3

2
2

2
13

2
33

2
22

2
11 σσσσσσ ≥++≥++= nnnnnnN      (3.4.11) 

 
Thus the maximum normal stress acting at a point is the maximum principal stress and 
the minimum normal stress acting at a point is the minimum principal stress. 
 
Shear Stresses 
 
Next, it will be shown that the maximum shearing stresses at a point act on planes 
oriented at 45o to the principal planes and that they have magnitude equal to half the 
difference between the principal stresses. 
 
From 3.3.39, 3.4.8 and 3.4.9, the shear stress on the plane is 
 

( ) ( )22
33

2
22

2
11

2
3

2
3

2
2

2
2

2
1

2
1

2 nnnnnnS σσσσσσσ ++−++=            (3.4.12) 
 
Using the condition 12

3
2
2

2
1 =++ nnn  to eliminate 3n  leads to 

 
( ) ( ) ( ) ( )[ ]23

2
232

2
131

2
3

2
2

2
3

2
2

2
1

2
3

2
1

2 σσσσσσσσσσσ +−+−−+−+−= nnnnS    (3.4.13) 
 
The stationary points are now obtained by equating the partial derivatives with respect to 
the two variables 1n  and 2n  to zero: 
 

( ) ( ) ( ) ( )[ ]{ }
( ) ( ) ( ) ( )[ ]{ } 02

02

2
232

2
13132322

2

2

2
232

2
13131311

1

2

=−+−−−−=
∂
∂

=−+−−−−=
∂
∂

nnn
n

nnn
n

S

S

σσσσσσσσ
σ

σσσσσσσσ
σ

      (3.4.14) 

 
One sees immediately that 021 == nn  (so that 13 ±=n ) is a solution; this is the principal 
direction 3e  and the shear stress is by definition zero on the plane with this normal.  In 
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this calculation, the component 3n  was eliminated and 2
Sσ  was treated as a function of 

the variables ),( 21 nn .  Similarly, 1n  can be eliminated with ),( 32 nn  treated as the 
variables, leading to the solution 1en = , and 2n  can be eliminated with ),( 31 nn  treated as 
the variables, leading to the solution 2en = .  Thus these solutions lead to the minimum 
shear stress value 02 =Sσ . 
 
A second solution to Eqn. 3.4.14 can be seen to be 2/1,0 21 ±== nn  (so that 

2/13 ±=n ) with corresponding shear stress values ( )2
324

12 σσσ −=S .  Two other 
solutions can be obtained as described earlier, by eliminating 1n  and by eliminating 2n .  
The full solution is listed below, and these are evidently the maximum (absolute value of 
the) shear stresses acting at a point: 
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⎠
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S

S

S
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n

          (3.4.15) 

 
Taking 321 σσσ ≥≥ , the maximum shear stress at a point is 
 

( )31max 2
1 σστ −=     (3.4.16) 

 
and acts on a plane with normal oriented at 45o to the 1 and 3 principal directions.  This is 
illustrated in Fig. 3.4.3. 
 

 
 

Figure 3.4.3: maximum shear stress at  apoint 
 
 
Example (maximum shear stress) 
 
Consider the stress state  
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[ ]
⎥
⎥
⎦

⎤

⎢
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⎣

⎡

−
−−=

1120
1260
005

ijσ  

 
This is the same tensor considered in the example of §1.11.1.  Using the results of that 
example, the principal stresses are 15,5,10 321 −=== σσσ  and so the maximum shear 
stress at that point is 

( )
2
25

2
1

31max =−= σστ  

 
The planes and direction upon which they act are shown in Fig. 3.4.4. 
 

 
 

Figure 3.4.4: maximum shear stress 
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3.5 Stress Measures for Large Deformations 
 
Thus far, the surface forces acting within a material have been described in terms of the 
Cauchy stress tensor σ .  The Cauchy stress is also called the true stress, to distinguish it 
from other stress tensors, some of which will be discussed below.  It is called the true 
stress because it is a true measure of the force per unit area in the current, deformed, 
configuration.  When the deformations are small, there is no distinction to be made 
between this deformed configuration and some reference, or undeformed, configuration, 
and the Cauchy stress is the sensible way of describing the action of surface forces.  
When the deformations are large, however, one needs to refer to some reference 
configuration.  In this case, there are a number of different possible ways of defining the 
action of surface forces; some of these stress measures often do not have as clear a 
physical meaning as the Cauchy stress, but are useful nonetheless. 
 
 
3.5.1 The First Piola – Kirchhoff Stress Tensor 
 
Consider two configurations of a material, the reference and current configurations.  
Consider now a vector element of surface in the reference configuration, dSN , where dS  
is the area of the element and N is the unit normal.  After deformation, the material 
particles making up this area element now occupy the element defined by dsn , where ds  
is the area and n is the normal in the current configuration.  Suppose that a force fd  acts 
on the surface element (in the current configuration).  Then by definition of the Cauchy 
stress 
 

dsd nσf =       (3.5.1) 
 
The first Piola-Kirchhoff stress tensor P (which will be called the PK1 stress for 
brevity) is defined by 
 

dSd NPf =         (3.5.2) 
 
The PK1 stress relates the force acting in the current configuration to the surface element 
in the reference configuration.  Since it relates to both configurations, it is a two-point 
tensor. 
 
The (Cauchy) traction vector was defined as 
 

ds
dft = ,     nσt =                                                 (3.5.3) 

 
Similarly, one can introduce a PK1 traction vector T such that 
 

dS
dfT = ,     NPT =                                              (3.5.4) 

 
Whereas the Cauchy traction is the actual physical force per area on the element in the 
current configuration, the PK1 traction is a fictitious quantity – the force acting on an 
element in the current configuration divided by the area of the corresponding element in 



Section 3.5 
 

Solid Mechanics Part III            Kelly 342

the reference configuration.  Note that, since dSdsd Ttf == , it follows that T and t act 
in the same direction (but have different magnitudes), Fig. 3.5.1.  
 

 
 

Figure 3.5.1: Traction vectors 
 
 
Uniaxial Tension 
 
Consider a uniaxial tensile test whereby a specimen is stretched uniformly by a constant 
force f, Fig. 3.5.2.  The initial cross-sectional area of the specimen is 0A  and the cross-
sectional area of the specimen at time t is )(tA .  The Cauchy (true) stress is  
 

)(
)(

tA
t fσ =                                                       (3.5.5) 

 
and the PK1 stress is  
 

0A
fP =                                                          (3.5.6) 

 
This stress measure, force over area of the undeformed specimen, as used in the uniaxial 
tensile test, is also called the engineering stress. 
 
 

 
 

Figure 3.5.2: Uniaxial tension of a bar 
 
 
The Nominal Stress 
 
The PK1 stress tensor is also called the nominal stress tensor.  Note that many authors  
use a different definition for the nominal stress, namely PNT = , and then define the 
PK1 stress to be the transpose of this P.  Thus all authors use the same definition for the 
PK1 stress, but a slightly different definition for the nominal stress. 

current 
configuration 

reference 
configuration 

dS ds

N n tT
dSdsd Ttf ==
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current 
configuration 
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Relation between the Cauchy and PK1 Stresses 
 
From the above definitions,  
 

dSds NPnσ =         (3.5.7) 
 
Using Nanson’s formula, 2.2.59, dSJds NFn T−= , 
 

T1

T

FPσ
FσP

−

−

=

=

J
J

     PK1 stress      (3.5.8) 

 
The Cauchy stress is symmetric, but the deformation gradient is not.  Hence the PK1 
stress tensor is not symmetric, and this restricts its use as an alternative stress measure to 
the Cauchy stress measure.  In fact, this lack of symmetry and lack of a clear physical 
meaning makes it uncommon for the PK1 stress to be used in the modeling of materials.  
It is, however, useful in the description of the momentum balance laws in the material 
description, where P plays an analogous role to that played by the Cauchy stress σ  in the 
equations of motion (see later). 
 
 
3.5.2 The Second Piola – Kirchhoff Stress Tensor 
 
The second Piola – Kirchhoff stress tensor, or the PK2 stress, S, is defined by 
 

T1 −−= FσFS J      PK2 stress         (3.5.9) 
 
Even though the PK2 does not admit a physical interpretation (except in the simplest of 
cases, but see the interpretation below), there are three good reasons for using it as a 
measure of the forces acting in a material.  First, one can see that 
 

( ) ( ) ( ) TT1T1TTTT1 −−−−−− == FσFFσFσFF  
 
and since the Cauchy stress is symmetric, so is the PK2 stress: 
 

TSS =            (3.5.10) 
 
A second reason for using the PK2 stress is that, together with the Euler-Lagrange strain 
E, it gives the power of a deforming material (see later).  Third, it is parameterized by 
material coordinates only, that is, it is a material tensor field, in the same way as the 
Cauchy stress is a spatial tensor field. 
 
Note that the PK1 and PK2 stresses are related through 
 

PFSFSP 1, −==                                           (3.5.11) 
 



Section 3.5 
 

Solid Mechanics Part III            Kelly 344

The PK2 stress can be interpreted as follows: take the force vector in the current 
configuration fd  and locate a corresponding vector in the undeformed configuration 
according to fFf dd 1−= .  The PK2 stress tensor is this fictitious force divided by the 
corresponding  area element in the reference configuration: dSd SNf = , and 3.5.9 follows 
from 3.5.2, 3.5.8: 
 

dSJdSd NFσNPf T−==  
 
 
3.5.3 Alternative Stress Tensors 
 
Some other useful stress measures are described here. 
 
The Kirchhoff Stress 
 
The Kirchhoff stress tensor τ  is defined as 
 

στ J=         Kirchhoff Stress                    (3.5.12) 
 
It is a spatial tensor field parameterized by spatial coordinates.  One reason for its use is 
that, in many equations, the Cauchy stress appears together with the Jacobian and the use 
of τ  simplifies formulae. 
 
Note that the Kirchhoff stress is the push forward of the PK2 stress; from 2.12.9b, 
2.12.11b, 
 

( )
( ) T1#1

*

T#
*

−−− ==

==

τFFτS

FSFSτ

χ

χ
                                         (3.5.13) 

 
The Corotational Cauchy Stress 
 
The corotational stress σ̂  is defined as 
 

σRRσ Tˆ =         Corotational Stress                (3.5.14) 
 
where R is the orthogonal rotation tensor.  Whereas the Cauchy stress is related to the 
PK2 stress through T1 SFFσ −= J , the corotational stress is related to the PK2 stress 
through (with F replaced by the right (symmetric) stretch tensor U): 
 

( ) ( ) ( ) σRRUFσFUUσFFUSUUσ TT1T11T1ˆ ==== −−−−−− JJJ         (3.5.15) 
 
The corotational stress is defined on the intermediate configuration of Fig. 2.10.8.  It can 
be regarded as the push forward of the PK2 stress from the reference configuration 
through the stretch U, scaled by 1−J  (Eqn. 2.12.28b): 
 

( ) ( ) ( ) USUUSUUGUGggSσ GU
1T111#

*
1 ˆˆˆ −−−−− ==⊗=⊗== JJSJSJJ ji

ij
ji

ijχ  (3.5.16) 
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or as the pull-back of the Cauchy stress with respect to R (Eqn. 2.12.27f): 
 

( ) ( ) σRRggσσ gR
T#1

* ˆˆˆ =⊗== −
ji

ijσχ                               (3.5.17) 
 
The Biot Stress 
 
The Biot (or Jaumann) stress tensor BT  is defined as 
 

USPRT == T
B         Biot Stress                    (3.5.18) 

 
From 3.5.11, it is similar to the PK1 stress, only with F replaced by U. 
 
Example 
 
Consider a pre-stressed thin plate with 0

111 σσ = , 0
222 σσ = , that is, it has a non-zero 

stress although no forces are acting1, Fig. 3.5.3.  In this initial state, IF =  and, 
considering a two-dimensional state of stress, 
 

⎥
⎦

⎤
⎢
⎣

⎡
====== 0

2

0
1

B 0
0ˆ
σ

σ
TτσSPσ  

 
The material is now rotated as a rigid body o45  counterclockwise – the stress-state is 
“frozen” within the material and rotates with it.  Then  
 

⎥
⎦

⎤
⎢
⎣

⎡ −
==

2/12/1
2/12/1RF  

 
The stress components with respect to the rotated *

ix  axes shown in Fig. 3.5.3b are 
0
1

*
11 σσ = , etc.; the components with respect to the spatial axes ix  can be found from the 

stress transformation rule [ ] [ ][ ][ ] [ ][ ][ ]T**T RσRQσQσ == , and so 
 

( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡

+−
−+

= 0
2

0
12

10
2

0
12

1

0
2

0
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2

0
12

1

σσσσ
σσσσ

σ  

 
Note that the Cauchy stress changes with this rigid body rotation.  Further, with 1=J , 
 

⎥
⎦

⎤
⎢
⎣

⎡
===⎥

⎦

⎤
⎢
⎣

⎡ −
== 0

2

0
1

B0
2

0
1

0
2

0
1

0
0ˆ,

2/2/
2/2/,

σ
σ

σσ
σσ TσSPστ  

 
Note that the PK1 stress is not symmetric.  Now attach axes *x  to the material and rotate 
these axes with the specimen as it rotates, as in Fig. 3.5.3b.  The components with respect 

                                                 
1 for example a piece of metal can be deformed; when the load is removed it is often pre-stressed –  there is 
a non-zero state of stress in the material 
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to these rotated axes give the corotational stress; the corotational stress is the stress in a 
body, taking out the stress changes caused by rigid body rotations – one says that the 
corotational stress (and PK2 stress) “rotate” with the body. 
 

 
 

Figure 3.5.3: Pre-stressed material; (a) original position, (b) rotated configuration 
 

■  
 
 
3.5.4 Small deformations 
 
From §2.7, when the deformations are small, neglecting terms involving products of 
displacement gradients, 
 

)grad(O)grad(Ograd 2 uIuuIF +=++=                             (3.5.19) 
 
Here, )grad(O u  means terms of the order of displacement gradients (and higher) have 
been neglected and 2)grad(O u  means terms of the order of products of displacement 
gradients (and higher) have been neglected.  Also, 
 

( ) )grad(O1)grad(Odiv1)grad(Ograddet
det

22 uuuuuI
F

+=++=++=

=J
         (3.5.20) 

 
From 3.5.8 and 3.5.9, using 3.5.19-20, one has 

 

)grad(O)grad(O
)grad(O)grad(O

T

T

uSuσFSFσ
uPuσFPσ

+=+→=

+=+→=

J
J

                      (3.5.21) 

 
In the linear theory then, with 0)grad(O →u , the stress measures encountered in this 
section are all equivalent. 
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3.5.5 Objective Stress Tensors 
 
In order to ascertain the objectivity of the stress tensors, first note that, by definition, force 
is an objective vector, and therefore so also is the traction vector.  Similarly for the 
normal vector.  The normal and traction vectors transform under an observer 
transformation according to 2.8.10, Qnn =*  and Qtt =* .  Then 
 

( ) *T**T*T nQQσtnσQtQσnt =→=→=                      (3.5.22) 
 
and so T* QQσσ = ; according to 2.8.12, the Cauchy stress is objective.  The PK2 stress S 
is objective, since it is a material tensor unaffected by an observer transformation.  For 
the PK1 stress, using 2.8.23, 
 

( ) ( ) ( )TTTT**** −−−
=== σFQQFQQσFσP JJJ                     (3.5.23) 

 
and so, according to 2.8.16, P is objective (transforming like a vector, being a two-point 
tensor).  
 
 
3.5.6 Objective Stress Rates 
 
One needs to incorporate stress rates in models of materials where the response depends 
on the rate of stressing, for example with viscoelastic materials.  As discussed in §2.8.5, 
the rates of objective tensors are not necessarily objective.  As discussed in §2.12.3, the 
Lie derivative of a spatial second order tensor is objective.  For the Cauchy stress, there 
are a number of different objective rates one can use, based on the Lie derivative (see 
Eqns. 2.8.35-36, 2.12.41, 2.12.44): 
 
 Cotter-Rivlin stress rate σlσlσ ++ T&   σb

vL=  
 Jaumann stress rate  σwwσσ +−&   ( )σσ #

v
b
v2

1 LL +=           (3.5.24) 
 Oldroyd stress rate2  Tσllσσ −−&   σ#

vL=  
   
Stress rates of other spatial stress tensors can be defined in the same way, for example the 
Oldroyd rate of the Kirchhoff stress tensor is Tτllττ −−& . 
 
The material derivative of the material PK2 stress tensor, S& , is objective.  The push 
forward of S&  is, from 2.12.9b, 
 

( ) T#
* FSFS && =χ                                                (3.5.25) 

 

                                                 
2 this is sometimes called the contravariant Oldroyd stress rate, to distinguish it from the Cotter-Rivlin rate, 
which is also sometimes called the covariant Oldroyd stress rate  
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This push forward, scaled by the inverse of the Jacobian, T1 FSF &−J  is called the 
Truesdell stress rate.  This can be expressed in terms of the Cauchy stress by using 
3.5.9, and then 2.5.20, 2.5.5: 
 

( )

( )σdσllσσ

FFσFFσFFσFFσFFFFσFF

trT

T
.

T1T1T
.

1T11TT11

+−−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++= −−−−−−−−−−−−

&

&& JJJJJJ
dt
dJ

 

(3.5.26) 
 
Thus far, objective rates have been constructed by pulling back, taking derivatives and 
pushing forward.  One can construct objective rates also by pulling back and pushing 
forward with the rotation tensor R only, since it is the rotation which causes the stress 
rates to be non-objective.  For example, σ#

vL , setting RF = , is, from 3.5.17 and 
2.12.27b, 
 

( ) ( )[ ]
( )

[ ] ( )

( )
σΩσΩσ

RRσRRσRRσRR

σσ gR
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−+=
++=
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⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ −

&

&&& TTTT

ˆ

#

*
ˆ

#1
** ˆχχχ

              (3.5.27) 

 
where TRRΩ &=R  is the skew-symmetric angular velocity tensor 2.6.3.  The stress rate 
3.5.27 is called the Green-Naghdi stress rate.  From the above, the Green-Naghdi rate is 
the push forward of the time derivative of the corotational stress. 
 
Example 
 
Consider again the example discussed at the end of §3.5.3, only let the plate rotate at 
constant angular velocity ω , so  
 

( ) ( )
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( ) ( )
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RFRF &&  

 
Again, using the stress transformation rule [ ] [ ][ ][ ] [ ][ ][ ]T**T RσRQσQσ == ,  
 

( ) ( ) ( ) ( )( )
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and, with 1=J , 
 

( ) ( )
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Also, 
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⎥
⎦
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10T1 ωRΩRRFFwl &&  

 
Then 
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and 
 

( ) ( )( ) ( ) ( )( )( )
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For a rigid body rotation, it can be seen that the definitions of the Cotter-Rivlin, Jaumann, 
Oldroyd, Truesdell and Green-Naghdi rates are equivalent, and they are all zero: 
 

0σwwσσ =+−&  
 

This is as expected since objective stress rates for two configurations which differ by a 
rigid body rotation will, by definition, be equal (the stress components will not change); 
they are zero in the reference configuration and so will be zero in the rotated 
configuration.  

■  
 
 
3.5.7 Problems 
 
1.  Consider the case of uniaxial stress, where a material with initial dimensions length 

0l , breadth 0w  and height 0h  deforms into a component with dimensions length l , 
breadth w  and height h .  The only non-zero Cauchy stress component is 11σ , 
acting in the direction of the length of the component. 
(a) write down the motion equations in the material description, )(Xx χ=  
(b) calculate the deformation gradient F and confirm that Fdet=J  is the ratio of 

the volume in the current configuration to that in the initial configuration 
(c) Calculate the PK1 stress.  How is it related to the Cauchy stress for this uniaxial 

stress-state? 
(d) calculate the PK2 stress 

2. A material undergoes the deformation 
3321211 ,,3 XxXtXxtXx =+==  

 The Cauchy stress at a point in the material is 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎣

⎡
−

−
=

000
02
02

tt
tt

σ  

(a) Calculate the PK1 and PK2 stresses at the point (check that PK2 is symmetric) 
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(b) Calculate the expressions ESdσFP && :,:,: J  (for E& , use the expression 
2.5.18b, dFFE T=& ).  In these expressions, d is the rate of deformation tensor.  
(You should get the same result for all three cases, since they all give the rate of 
internal work done by the stresses during the deformation, per unit reference 
volume – see later) 

3.  Show that the Oldroyd rate of the Kirchhoff stress, Tτllττ −−& , is equal to the 
Jacobian times the Truesdell stress rate of the Cauchy stress, 3.5.26. 
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3.6 The Equations of Motion and Symmetry of Stress 
 
In Part II, §1.1, the Equations of Motion were derived using Newton’s Law applied to a 
differential material element.  Here, they are derived using the principle of linear 
momentum. 
 
 
3.6.1 The Equations of Motion (Spatial Form) 
 
Application of Cauchy’s law σnt =  and the divergence theorem 1.14.21 to 3.2.7 leads 
directly to the global form of the equations of motion 
 

[ ] ∫∫∫∫ =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

∂

∂
=+

v
i

v
i

j

ij

vv

dvvdvb
x

dvdv && ρ
σ

ρ ,div vbσ             (3.6.1) 

 
The corresponding local form is then 
 

dt
dv

b
xdt

d i
i

j

ij ρ
σ

ρ =+
∂

∂
=+ ,div vbσ    Equations of Motion    (3.6.2) 

 
The term on the right is called the inertial, or kinetic, term, representing the change in 
momentum.  The material time derivative of the spatial velocity field is 
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∂
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and it can be seen that the equations of motion are non-linear in the velocities. 
 
Equations of Equilibrium 
 
When the acceleration is zero, the equations reduce to the equations of equilibrium, 
 

0div =+ bσ      Equations of Equilibrium        (3.6.3) 
 
Flows 
 
A flow is a set of quantities associated with the system of forces t and b, for example the 
quantities ρ,,σv .  A flow is steady if the associated spatial quantities are independent of 
time.  A potential flow is one for which the velocity field can be written as the gradient 
of a scalar function, φgrad=v .  An irrotational flow is one for which 0curl =v . 
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3.6.2 The Equations of Motion (Material Form) 
 
In the spatial form, the linear momentum of a mass element is dvvρ .  In the material 
form it is dVV0ρ .  Here, V is the same velocity as v, only it is now expressed in terms of 
the material coordinates X, and dVdv 0ρρ = .  The linear momentum of a collection of 
material particles occupying the volume v in the current configuration can thus be 
expressed in terms of an integral over the corresponding volume V in the reference 
configuration: 
 

( ) ( )∫=
V

dVtt ,)( 0 XVXL ρ     Linear Momentum (Material Form)    (3.6.4) 

 
and the principle of linear momentum is now, using 3.1.31, 
 

( ) ( ) )(, 00 tdV
dt
ddVt

dt
d

VV

FVXVX ≡= ∫∫ ρρ                        (3.6.5) 

 
The external forces F to be considered are those acting on the current configuration.  
Suppose that the surface force acting on a surface element ds  in the current configuration 
is dSdsd Ttf ==surf , where t and T are, respectively, the Cauchy traction vector and the 
PK1 traction vector (Eqns. 3.5.3-4).  Also, just as the PK1 stress measures the actual force 
in the current configuration, but per unit surface area in the reference configuration, one 
can introduce the reference body force B: this is the actual body force acting in the 
current configuration, per unit volume in the reference configuration.  Thus if the body 
force acting on a volume element dv  in the current configuration is bodyfd , then  

 
dVdvd Bbf ==body                       (3.6.6) 

 
The resultant force acting on the body is then 

 
dVBdSTFdVdSt

V
i

S
ii

VS
∫∫∫∫ +=+= ,)( BTF                  (3.6.7) 

 
Using Cauchy’s law, PNT = , where P is the PK1 stress, and the divergence theorem 
1.12.21, 3.6.5 and 3.6.7 lead to 
 

[ ] ∫∫ =+
VV

dV
dt
ddV VBP 0Div ρ                 (3.6.8) 

 
and the corresponding local form is 
 

dt
dV

B
X
P

dt
d i

i
j

ij
00 ,Div ρρ =+

∂

∂
=+

VBP  

Equations of Motion (Material Form)     (3.6.9) 
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Derivation from the Spatial Form 
 
The equations of motion can also be derived directly from the spatial equations.  In order 
to do this, one must first show that ( )TDiv −FJ  is zero.  One finds that (using the 
divergence theorem, Nanson’s formula 2.2.59 and the fact that 0div =I ) 
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           (3.6.10) 

 
This result is known as the Piola identity.  Thus, with the PK1 stress related to the 
Cauchy stress through 3.5.8, T−= σFP J , and using identity 1.14.16c, 
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             (3.6.11) 

 
From 2.2.8c, 
 

σP divDiv J=                  (3.6.12) 
 
Then, with JdVdv =  and 3.6.6, the equations of motion in the spatial form can now be 
transformed according to 
 

[ ] [ ] ∫∫∫∫ =+→=+
VVvv

dVdVdvdv VBPvbσ && 0Divdiv ρρ  

 
as before.  
 
 
3.6.3 Symmetry of the Cauchy Stress 
 
It will now be shown that the principle of angular momentum leads to the requirement 
that the Cauchy stress tensor is symmetric.  Applying Cauchy’s law to 3.2.11,  
 

( )

dvvx
dt
ddvbxdSnx

dv
dt
ddvds

v
kjijk

v
kjijk

s
lkljijk

vvs

∫∫∫
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=+
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ρεεσε

ρvrbrσnr
                  (3.6.13) 

 
The surface integral can be converted into a volume integral using the divergence 
theorem.  Using the index notation, and concentrating on the integrand of the resulting 
volume integral, one has, using 1.3.14 (the permutation symbol is a constant here, 

0/ =∂∂ lijk xε ), 
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where E  is the third-order permutation tensor, Eqn. 1.9.6, ( )kjiijk eee ⊗⊗= εE .  Thus, 
with the Reynold’s transport identity 3.1.31, 
 

{ } ( )∫∫∫ ×=×++×
vvv

dv
dt
ddvdv vrbrσσr ρTdiv :E                (3.6.15) 

 
The material derivative of this cross product is  
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d
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d vrvvvrvrvrvr ×=×+×=×+×=×                   (3.6.16) 

 
and so 
 

0divT =
⎭
⎬
⎫

⎩
⎨
⎧ −+×+ ∫∫

vv

dv
dt
ddv vbσrσ ρ:E                   (3.6.17) 

 
From the equations of motion 2.6.2, the term inside the brackets is zero, so that 

 
0,0T == kjijkσεσ:E                    (3.6.18) 

 
It follows, from expansion of this relation, that the matrix of stress components must be 
symmetric: 

 
jiij σσ == ,Tσσ      Symmetry of Stress                  (3.6.19) 

 
 
3.6.4 Consequences in the Material Form 
 
Here, the consequences of 3.6.19 on the PK1 and PK2 stresses is examined.  Using the 
result Tσσ =  and 3.5.8, T1PFσ −= J , 
 

( ) T1TT1T1 FPPFPF −−− == JJJ                           (3.6.20) 
 
so that 
 

jkikjkik PFFP == ,TT FPPF               (3.6.21) 
 
These equations are trivial when ji = , not providing any constraint on P.  On the other 
hand, when ji ≠  one has the three equations 
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332332223121332332223121
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PFPFPFFPFPFP

++=++
++=++
++=++

                  (3.6.22) 

 
Thus angular momentum considerations imposes these three constraints on the PK1 stress 
(as they imposed the three constraints 2112 σσ = , 3113 σσ = , 3223 σσ =  on the Cauchy 
stress). 
 
It has already been seen that a consequence of the symmetry of the Cauchy stress is the 
symmetry of the PK2 stress S; thus, formally, the symmetry of S is the result of the 
angular momentum principle. 
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3.7 Boundary Conditions and The Boundary Value 
Problem 

 
In order to solve a mechanics problem, one must specify certain conditions around the 
boundary of the material under consideration.  Such boundary conditions will be 
discussed here, together with the resulting boundary value problem (BVP).  (see Part I, 
3.5.1, for a discussion of stress boundary conditions.) 
 
 
3.7.1 Boundary Conditions 
 
There are two types of boundary condition, those on displacement and those on traction.  
Denote the body in the reference condition by 0B  and in the current configuration by B.  
Denote the boundary of the body in the reference configuration by S  and in the current 
configuration by s, Fig. 3.7.1. 
 
Displacement Boundary Conditions 
 
The position of particles may be specified over some portion of the boundary in the 
current configuration.  That is, ( )Xχx =  is specified to be x  say, over some portion us  of 
s, Fig. 3.7.1, which corresponds to the portion uS  of S .  With )()( xXxxu −= , or 

XXxXU −= )()( , this can be expressed as 
 

u

u

XXUXU
xxuxu

S
s

∈=

∈=

),()(
),()(

                                            (3.7.1) 

 
These are called displacement boundary conditions.  The most commonly encountered 
displacement boundary condition is where some portion of the boundary is fixed, in 
which case ( ) oxu = . 
 

 
 

Figure 3.7.1: Boundary conditions 
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Traction Boundary Conditions 
 
Traction tt =  can be specified over a portion σs  of the boundary, Fig. 3.7.1.  These 
traction boundary conditions are related to the PK1 traction TT =  over the 
corresponding surface σS  in the reference configuration, through Eqns. 3.5.1-4, 
 

dsdsdSdS σntPNT ===                                           (3.7.2) 
 
One usually knows the position of the boundary S  and the normal )(XN  in the reference 
configuration.  As deformation proceeds, the PK1 traction develops according to PNT =  
with, from 3.5.8, T−= σFP J .  The PK1 stress will in general depend on the motion x  and 
the deformation gradient F , so the traction boundary condition can be expressed in the 
general form 
 

( )FxXTT ,,=                                                      (3.7.3) 
 
Example: Fluid Pressure 
 
Consider the case of fluid pressure p around the boundary, nt p−= , Fig. 3.7.2.  The 
Cauchy traction t  depends through the normal n  on the new position and geometry of 
the surface σs .  Also, NFT T−−= pJ , which is of the general form 3.7.3. 
 

 
 

Figure 3.7.2: Fluid pressure on deforming material 
 
Consider a material under water with part of its surface deforming as shown in Fig. 3.7.2.  
Referring to the figure, 1EN −= , 21 sincos een θθ +−= , Iσ p−= , ( )2xhgp −= ρ  and 
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The traction vectors and PK1 stress are  
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with (note that θcos/ =dsdS ) p=t  and θcos/p=T .  The traction vectors clearly 
depend on both position, and the deformation through θ .  In this example, 

21
1 tanGradgrad eeFIUIFu ⊗=−==−= − θ  and 

 
( ) uuuu grad:gradarctangradarctangrad ==θ  

■  
 
 
Dead Loading 
 
A special case of loading is that of dead loading, where 
 

( )XTT =                                                         (3.7.4) 
 
Here, the PK1 stress on the boundary does not change with the deformation and an 
initially normal traction will not remain so as deformation proceeds. 
 
For example, if one considers again the geometry of Fig. 3.7.2, this time take 
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3.7.2 The Boundary Value Problem 
 
The equations of motion 3.6.2, 3.6.9, are a set of three differential equations.  In the 
solution of any problem, one would have to supplement these equations with others, for 
example a constitutive equation expressing a relationship between the stress and the 
kinematic variables (see Part IV).  This constitutive relation will typically relate the stress 
to the strains, or rates of strain, for example ),( deσ f= .  Suppose then that the stresses 
are known in terms of the strains and hence the displacements u.  The equations of 
motion are then a set of three second order differential equations in the three unknowns 

iu  (assuming that the body force b is a prescribed function of the problem).  They need to 
be subjected to certain boundary and initial conditions. 
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Assume that the boundary conditions are such that the displacements are specified over 
that part of the surface us  and tractions are specified over that part σs , with the total 
surface σu sss += , with 0=∩ σu ss  1.  Thus 
 

us
s

on,
on,

uu
tnσt

=
== σ        Boundary Conditions            (3.7.5) 

 
where the overbar signifies quantities which are prescribed.  Initial conditions are also 
required for the displacement and velocity, so that 
 

0at),(),(
0at),(),(

0

0

==
==

t
t

xutxu
xutxu

&&
     Initial Conditions             (3.7.6) 

 
and it is usually taken that Xx =  at 0=t .  Comparing 3.7.5 and 3.7.6, one also requires 

that uu =0 , 
⋅

= uu0&  over us , so that the boundary and initial conditions are compatible. 
 
These equations together, the differential equations of motion and the boundary and 
initial conditions, are called the strong form of the initial boundary value problem 
(BVP): 
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0
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==+

t
t
s
s

u

xutxu
xutxu

uu
tσnt

uvbσ

&&

&&&

σ

ρρ

     Strong form of the Initial BVP       (3.7.7) 

 
 
When the problem is quasi-static, so the accelerations can be neglected, the equations of 
motion reduce to the equations of equilibrium 3.6.3.  In that case one does not need initial 
conditions and one has a boundary value problem involving 3.7.5 only. 
 
It is only in certain special cases and in certain simple problems that an exact solution can 
be obtained to these equations.  An alternative solution strategy is to convert these 
equations into what is known as the weak form.  The weak form, which is in the form of 
integrals rather than differential equations, can then be solved approximately using a 
numerical technique, for example the Finite Element Method2.  The weak form is 
discussed in §3.9. 
 
                                                 
1 It is possible to specify both traction and displacement over the same portion of the boundary, but not the 
same components.  For example, if one specified 11et t=  on a boundary, one could also specify 22eu u= , 

but not 11eu u= .  In that case, one could imagine the boundary to consist of two separate boundaries, one 

with conditions with respect to 1e  and one with respect to 2e , and still write 0=∩ σu ss . 
2 Further, it is often easier to prove results regarding the uniqueness and stability of solutions to the problem 
when it is cast in the weak form 
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In the material form, the boundary conditions are 
 

uS
S

on,
on,

UU
TPNT

=

== σ        Boundary Conditions            (3.7.8) 

 
and the initial conditions are 
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      Initial Conditions              (3.7.9) 

 
and the initial vale problem is 
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     Strong form of the Initial BVP       (3.7.10) 
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3.8 Balance of Mechanical Energy 
 
 
3.8.1 The Balance of Mechanical Energy 
  
First, from Part I, Chapter 5, recall work and kinetic energy are related through 

 
KWW  intext                  (3.8.1) 

 
where extW  is the work of the external forces and intW  is the work of the internal forces.  

The rate form is  
 

KPP  intext               (3.8.2) 

 
where the external and internal powers and rate of change of kinetic energy are 
 

K
dt
dKW

dt
dPW

dt
dP  ,, intintextext        (3.8.3) 

 
This expresses the mechanical energy balance for a material.  Eqn. 3.8.2 is equivalent to 
the equations of motion (see below). 
 
The total external force acting on the material is given by 3.2.6: 
 

dvds
vs
  btFext     (3.8.4) 

 
The increment in work done dW  when an element subjected to a body force (per unit 
volume) b undergoes a displacement ud  is dvdub  .  The rate of working is 

 dvdtddP /ub  .  Thus, and similarly for the traction, the power of the external forces 
is 
 

dvdsP
vs
  vbvtext           (3.8.5) 

 
where v is the velocity.  Also, the total kinetic energy of the matter in the volume is 
 

 
v

dvK vv2
1            (3.8.6) 

 
Using Reynold’s transport theorem, 
 

   
vv

dv
dt
ddv

dt
dK

dt
d v

vvv 2
1   (3.8.7) 

 
Thus the expression 3.8.2 becomes 
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 
vvs

dv
dt
dPdvds v

vvbvt int             (3.8.8) 

 
 
 
 
 
 
It can be seen that some of the power exerted by the external forces alters the kinetic 
energy of the material and the remainder changes its internal energy state. 
 
Conservative Force System 
 
In the special case where the internal forces are conservative, that is, no energy is 
dissipated as heat, but all energy is stored as internal energy, one can express the power of 
the internal forces in terms of a potential function u (see Part I, §5.1), and rewrite this 
equation as 
 

 
vvvs

dv
dt
ddv

dt
dudvds v

vvbvt                  (3.8.9) 

 
 
 
 
 
Here, the rate of change of the internal energy has been written in the form 
 

dv
dt
dudvu

dt
dU

dt
d

vv
               (3.8.10) 

 
where u is the internal energy per unit mass, or the specific internal energy.  
 
 
3.8.2 The Stress Power 
 
To express the power of the internal forces intP  in terms of stresses and strain-rates, first 

re-write the rate of change of kinetic energy using the equations of motion,  
 

  
vv

dvdv
dt
dK
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d

bσv
v

v div                 (3.8.11) 

 
Also, using the product rule of differentiation, 
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where l is the spatial velocity gradient, jiij xvl  / .  Decomposing l into its symmetric 

part d, the rate of deformation, and its antisymmetric part w, the spin tensor, gives 
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,:::: dσwσdσlσ             (3.8.13) 

 
since the double contraction of any symmetric tensor (σ ) with any skew-symmetric 
tensor (w) is zero, 1.10.31c.  Also, using Cauchy’s law and the divergence theorem 
1.14.21, 
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                      (3.8.14) 

 
Thus, finally, from Eqn. 3.8.8, 
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The term dσ :  is called the stress power; the stress power is the (negative of the) rate of 
working of the internal forces, per unit volume.  The complete equation for the 
conservation of mechanical energy is then 
 

 
vvvs

dv
dt
ddvdvds v

vdσvbvt :  Mechanical Energy Balance   (3.8.16) 

 
The stress power is that part of the externally supplied power which is not converted into 
kinetic energy; it is converted into heat and a change in internal energy. 
 
Note that, as with the law of conservation of mechanical energy for a particle, this 
equation does not express a separate law of continuum mechanics; it is merely a re-
arrangement of the equations of motion (see below), which themselves follows from the 
principle of linear momentum (Newtons second law). 
 
Conservative Force System 
 
If the internal forces are conservative, one has 
 

dv
dt
duU

dt
ddv

vv
  dσ :           (3.8.17) 

 
or, in local form, 
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dt
dudσ :  Mechanical Energy Balance (Conservative System)   (3.8.18) 

 
This is the local form of the energy equation for the case of a purely mechanical 
conservative process. 
 
 
3.8.3 Derivation from the Equations of Motion 
 
As mentioned, the conservation of mechanical energy equation can be derived directly 
from the equations of motion.  The derivation is similar to that used above (where the 
mechanical energy equations were used to derive an expression for the stress power using 
the equations of motion).  One has, multiplying the equations of motion by v and 
integrating, 

 

    

  













vsv

v

vvv

dvdsdv

dv

dvdvdv
dt
d

bvvtdσ

bvdσσv

bvlσσvbσv
v

v

:

:div

:divdiv

        (3.8.19) 

 
 
3.8.4 Stress Power and the Continuum Element 
 
In the above, the stress power was derived using a global (integral) form of the equations.  
The stress power can also be deduced by considering a differential mass element.  For 
example, consider such an element whose boundary particles are moving with velocity v 
and whose boundary is subjected to stresses σ , Fig. 3.8.1. 
 
Consider first the components of force and velocity acting in the 1x  direction.  The 
external forces act on the six sides.  On three of them (the ones that can be seen in the 
illustration) the stress and velocity act in the same direction, so the power is positive; on 
the other three they act in opposite directions, so there the power is negative. 
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Figure 3.8.1: A differential mass element subjected to stresses 
 
As usual (see §1.6.6), the element is assumed to be small enough so that the product of 
stress and velocity varies linearly over the element, so that the average of this product 
over an element face can be taken to be representative of the power of the surface forces 
on that element.  The power of the external surface forces acting on the three faces to the 
front is then 
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(3.8.20) 
 
Using a Taylor’s series expansion, and neglecting higher order terms, then leads to 
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(3.8.21) 
 
The net power per unit volume (subtracting the power of the stresses on the other three 
surfaces and dividing through by the volume) is then 
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  (3.8.22) 

 
Assume the body force b to act at the centre of the element.  Neglecting higher order 
terms which vanish as the element size is allowed to shrink towards zero, the power of the 
body force in the 1x  direction, per unit volume, is simply 11vb . 
 
The total power of the external forces is then (including the other two components of 
stress and velocity), using the equations of motion, 
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which again equals the stress power term plus the change in kinetic energy. 
 
The power of the internal forces is dσ : , a result of the forces acting inside the 
differential element, reacting to the applied forces σ  and b. 
 
 
3.8.5 The Balance of Mechanical Energy (Material form) 
  
The material form of the power of the external forces is written as a function of the PK1 
traction T and the reference body force B, 3.6.7, and the kinetic energy as a function of 
the velocity )(XV : 
 

 
VVS

dV
dt
dPdVdS V

VVBVT 0int                   (3.8.24) 

 
Next, using the identities 2.5.4, lFF   and 1.10.3h,   BACBCA :)(: T , gives 
 

    FσFFFσlσwσlσdσ  :::::: T1   ,                    (3.8.25) 
 
and so 
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Vvv
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               (3.8.26) 

 
and  
 

 
VVVS

dV
dt
ddVdVdS V

VFPVBVT 0:    Mechanical Energy Balance 

(Material Form)   (3.8.27) 
 
For a conservative system, this can be written in terms of the internal energy 
 

 
VVVS

dV
dt
ddV

dt
dudVdS V

VVBVT 00           (3.8.28) 

 
 
3.8.6 Work Conjugate Variables 
 
Since the stress power is the double contraction of the Cauchy stress and rate-of-
deformation, one says that the Cauchy stress and rate of deformation are work conjugate 
(or power conjugate or energy conjugate).  Similarly, from 3.8.26, the PK1 stress P is 
power conjugate to F .  It can also be shown that the PK2 stress S is power conjugate to 
the rate of Euler-Lagrange strain, E  (and hence also the right Cauchy-Green strain) 
{▲Problem 1} : 
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CSESFPdσ 

2
1:::: J        (3.8.29) 

 
Note that, for conservative systems, these quantities represent the rate of change of 
internal energy per unit reference volume. 
 
Using the polar decomposition and the relation IRR T , 
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where RΩ  is the angular velocity tensor 2.6.1.  Then, using 1.11.3h, 1.10.31c,  and the 
definitions 3.5.8, 3.5.12 and 3.5.18, 
 

UT

UPRΩτ

UPRΩPF

URPFΩPFP

R

R

R







:

::

::

:::

B

T

TT









                                        (3.8.31) 

 
so that the Biot stress is power conjugate to the right stretch tensor.  Since U is 
symmetric, UTFP  :sym: B .  Also, the Biot stress is conjugate to the Biot strain tensor 

IUB   introduced in  §2.2.5. 
 
From 3.5.14 and 1.10.3h, 
 

dσdRσRdσ ˆ:ˆ:ˆ: T                (3.8.32) 
 
so that the corotational stress is power conjugate to the rotated deformation rate, 
defined by 
 

dRRd Tˆ                            (3.8.33) 
 
Pull Back and Push Forward 
 
From 2.12.12-13, the double contraction of two tensors can be expressed as push-
forwards and pull-backs of those tensors.  For example, the stress power (per unit 
reference volume) in the material description is ES : .  Then, using 3.5.13, 2.12.9a and 
2.5.18b, dFFE T , 
 

    dσdτESES :::: *
#

* Jb
                                   (3.8.34) 

 
This means that the material and spatial descriptions of the internal power can be 
transformed into each other using push-forward and pull-back operations.  
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Similarly, pulling back the corotational stress and rotated deformation rate to the 
intermediate configuration of Fig. 2.10.8, using 2.12.13, 2.12.27, 

 

        dσdσdσ gRgR ˆ:ˆ:: 1
*

#1
*   b                              (3.8.35) 

 
The stress power in terms of spatial tensors can also be expressed as a derivative of a 
tensor, using the Lie derivative.  From 2.12.42, the Lie derivative of the Euler-Almansi 
strain is the rate of deformation and hence (note that there is no universal function whose 
derivative is d), so 
 

eσdσ bJJ vL::                    (3.8.36) 

 
 
3.8.7 Problems 
 
1.  Show that the rate of internal energy per unit reference volume dσ :J  is equivalent 

to  ES : (without using push-forwards/pull-backs). 
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3.9 The Principles of Virtual Work and Power 
 
The principle of virtual work was introduced and discussed in Part I, §5.5.  As mentioned 
there, it is yet another re-statement of the work – energy principle, only it is couched in 
terms of virtual displacements, and the principle of virtual power to be introduced below 
is an equivalent statement based on virtual velocities.   
 
On the one hand, the principle of virtual work/power can be regarded as the fundamental 
law of dynamics for a continuum, and from it can be derived the equations of motion.  On 
the other hand, one can regard the principle of linear momentum as the fundamental law, 
derive the equations of motion, and hence derive the principle of virtual work. 
 
 
3.9.1 Overview of The Principle of Virtual Work 
 
Consider a material under the action of external forces: body forces b and tractions t.  The 
body undergoes a displacement )(xu  due to these forces and now occupies its current 
configuration, Fig. 3.9.1.  The problem is to find this displacement function u . 
 

 
 

Figure 3.9.1: a material displacing to its current configuration under the action of 
body forces and surface forces 

 
Imagine the material to undergo a small displacement u  from the current configuration, 
Fig. 3.9.2, u  not necessarily constant throughout the body; u  is a virtual displacement, 
meaning that it is an imaginary displacement, and in no way is it related to the applied 
external forces – it does not actually occur physically. 
 
As each material particle moves through these virtual displacements, the external forces 
do virtual work W .  If the force b  acts at position x  and this point undergoes a virtual 
displacement )(xu , the virtual work is vW  ub  .  Similarly for the surface 
tractions, and the total external virtual work is 
 

0ext  
sv

dsdvW utub       External Virtual Work        (3.9.1) 

 
 

reference configuration current configuration 

u

1b

2b

3b

1t
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Figure 3.9.2: a virtual displacement field applied to a material in the current 
configuration 

 
There is also an internal virtual work intW  due to the internal forces as they move through 
virtual displacements and a virtual kinetic energy K .  The principle of virtual work then 
says that 
 

  KWW   intext                                                  (3.9.2) 
 
And this equation is then solved for the actual displacement u.  Expressions for the 
internal virtual work and virtual kinetic energy will be derived below. 
 
 
3.9.2 Derivation of The Principle of Virtual Work 
 
As mentioned above, one can simply write down the principle of virtual work, regarding 
it as the fundamental principle of mechanics, and then from it derive the equations of 
motion.  This will be done further below.  To begin, though, the starting point will be the 
equations of motion, and from it will be derived the principle of virtual work. 
 
Kinematically and Statically Admissible Fields 
 
A kinematically admissible displacement field is defined to be one which satisfies the 
displacement boundary condition 3.7.7c, usonuu   (see Part I, §5.5.1).  Such a 
displacement field would induce some stress field within the body, but this resulting 
stress field might not satisfy the equations of motion 3.7.7a.  In other words, it might not 
be the actual displacement field, but it does not violate the boundary conditions. 
 
A statically admissible stress field is one which satisfies the equations of motion 3.7.7a 
and the traction boundary conditions 3.7.7b, son,tσnt  .  Again, it might not be the 
actual stress field, since it is not specified how this stress field should be related to the 
actual displacement field. 
 
Derivation from the Equations of Motion (Spatial Form) 
 

material moved an amount u  

true position/solution u

1b

3b

1t

2b
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Let σ  be a statically admissible stress field corresponding to a kinematically admissible 
displacement field u , so sontσn  , usonuu   and ubσ div .  Multiplying the 
equations of motion by u  and integrating leads to 

 
  

vv

dvdv ubσuu div                      (3.9.3) 

 
Using the identity 1.14.16b, )grad(trdiv)(div T vAAvAv  , 1.10.10e, 

BABA :)(tr T  , and the symmetry of stress,  
 

   
vv

dvdv ubuσσuuu )(grad:div                       (3.9.4) 

 
and the divergence theorem 1.14.22c and Cauchy’s law lead to 

 

 
vvvs

dvdvdvds uuuσubut grad:                                 (3.9.5) 

 
Splitting the surface integral into one over us  and one over σs  gives 
 

 
vvvss

dvdvdvdsds uuuσubutut
σu

grad:                        (3.9.6) 

 
Next, consider a second kinematically admissible displacement field *u , so uson* uu  , 
which is completely arbitrary, in the sense that it is unrelated to either σ  or u .  This time 
multiplying ubσ div  across by *u , and following the same procedure, one arrives 
at 
 

 
vvvss

dvdvdvdsds **** grad: uuuσubutut
σu

                    (3.9.7) 

 
Let uuu  * , so the difference between *u  and u is infinitesimal, then subtracting 
3.9.6 from 3.9.7 gives the principle of virtual work, 

 
   

vvvs

dvdvdvds uuuσubut
σ

 grad:  

Principle of Virtual Work (spatial form) (3.9.8) 
 
Note that since *, uu , are kinematically admissible, uson* ouuu  .   
 
If one considers the u in 3.9.8 to be the actual displacement of the body, then u  can be 
considered to be a virtual displacement from the current configuration, Fig. 3.9.2.  Again, 
it is emphasized that this virtual displacement leaves the stress, body force and applied 
traction unchanged. 
 
One also has the transformed initial conditions: from 3.7.7d-e, 
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










vv
t

vv
t

dvdv

dvdv

uxuutxu

uxuutxu





)(),(

)(),(

00

00


                                  (3.9.9) 

 
Eqns. 3.9.8 and 3.9.9 together constitute the weak form of the initial BVP 3.7.7. 
 
The principle of virtual work can be grouped into three separate terms: the external virtual 
work:  
 

   
vs

dvdsW ubut
σ

 ext    External Virtual Work    (3.9.10) 

 
the internal virtual work, 
 

  
v

dvW )(grad:int uσ     Internal Virtual Work      (3.9.11) 

 
and the virtual kinetic energy, 
 

   
v

dvK uu        Virtual Kinetic Energy      (3.9.12) 

 
corresponding to the statement 3.9.2. 
 
Derivation from the Equations of Motion (Material Form) 
 
The derivation in the spatial form follows exactly the same lines as for the spatial form. 
 
This time, let P  be a statically admissible stress field corresponding to a kinematically 
admissible displacement field U , so PTPN Son , uUU Son  and UBP 

0div  .  
This time one arrives at 
 

   
VVVS

dVdVdVdS UUUPUBUT
P

 
0Grad:                  (3.9.13) 

 
Again, one can consider U to be the actual displacement of the body, so that U  
represents a virtual displacement from the current configuration.  With 
 

xXxU

XxU

 


                                                 (3.9.14) 

 
the virtual work equation can be expressed in terms of the motion )(Xχx  , 
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   
VVVS

dVdVdVdS χUχPχBχT
P

 
0Grad:  

Principle of Virtual Work (material form) (3.9.15) 
 
 
3.9.3 Principle of Virtual Work in terms of Strain Tensors 
 
The principle of virtual work, in particular the internal virtual work term, can be 
expressed in terms of strain tensors. 
 
Spatial Form 
 
Using the commutative property of the variation 2.13.2, the term  ugrad  in the internal 
virtual work expression 3.9.8 can be written as 

 

     
     

Ωε

uuuu

uuuuu













TT

TT

gradgrad
2
1gradgrad

2
1

)(grad)(grad
2
1)(grad)(grad

2
1)(grad

  (3.9.16) 

 
where ε  is the (symmetric) small strain tensor and Ω  is the (skew-symmetric) small 
rotation tensor, Eqn 2.7.2.  Using the fact that the double contraction of a symmetric 
tensor (σ ) and a skew-symmetric one (Ω ) is zero, 1.10.31c, one has 
 

   
vv

dvdvW εσuσ  :)(grad:int                              (3.9.17) 

 
Thus the stresses do internal virtual work along the virtual strains ε .  One has 
 

 
vvvs

dvdvdvds uuεσubut
σ

 :                       (3.9.18) 

 
Note that, although the small strain has been introduced here, this formulation is not 
restricted to small-strain theory.  It is only the virtual strains that must be infinitesimal – 
there is no restriction on the magnitude of the actual strains. 
 
From 2.13.15, the Lie-variation of the Euler-Almansi strain e is εe  L , so the internal; 
virtual work can be expressed as 
 

  
v

dvW eσ Lint :                                              (3.9.19) 

 
Material Form 
 
From Eqn. 3.9.15 and Eqn. 2.13.9, 
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
V

dVW FP  :int                                              (3.9.20) 

 
so 
 

 
VVVS

dVdVdVdS χUFPχBχT
P

 
0:                  (3.9.21) 

 
Derivation of the Material Form directly from the Spatial Form 
 
To transform the spatial form of the virtual work equation into the material form, first 
note that, with 3.9.14b,  
 

)grad(:)grad(: xσuσ                                           (3.9.22) 
 
Then, using 2.2.8b, 1Gradgrad  FVv , 2.13.9,  uF  Grad , 1.10.3h, 

  BACBCA :)(: T , and 3.5.10, T FσP J , 
 

 
 

 
  FP

FσF

FFσ

Fxσxσ







:
:

:
)Grad(:)grad(:

1

T

1

1














J

                                        (3.9.23) 

 
which converts 3.9.17 into 3.9.120. 
 
Also, again comparing 3.9.17 and 3.9.20, using the trace properties 1.10.10, and Eqns. 
3.5.9 and 2.13.11b, 
 

        ESεFFσFFεFσFεσεσFP  ::trtr:: TT11   JJJJ       (3.9.24) 
 
and so the internal work can also be expressed as an integral of ES :  over the reference 
volume. 
 
The Internal Virtual Work and Work Conjugate Tensors 
 
The expressions for stress power 3.8.15, 3.8.29, and internal virtual work are very similar.  
For the material description, the time derivatives in the former are simply replaced with 
the variation to get the latter: 
 

ESFPESFP  ::::                                    (3.9.25) 
 
For spatial tensors, the rate of strain tensor, e.g. d, is replaced with a Lie variation 
2.13.14.  For example, eσdσ bJJ vL::   (see 2.12.41-42) becomes: 
 

eσeσdσ Lv :L:: JJJ b                                      (3.9.26) 
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3.9.4 Derivation of the Strong Form from the Weak Form 
 
Just as the strong form (equations of motion and boundary conditions) was converted into 
the weak form (principle of virtual work), the weak form can be converted back into the 
strong form.  For example, 
 

    

  

  















vs

vs

v

vvvv

dvds

dvds

dv

dvdvdvdv

uuσut

uuσut

uuσuσ

uuuσuuεσ

σ

















div

div

divdiv

grad::

                  (3.9.27) 

 
and the last line follows from the fact that ou   on us .  Thus the weak form now reads 
 

    0div  
vs

dvds uubσutt
σ

              (3.9.28) 

 
and, since u  is arbitrary, one finds that the expressions in the parentheses are zero, and 
so 3.7.7 is recovered. 
 
 
3.9.5 Conservative Systems 
 
Thus far, no assumption has been made about the nature of the internal forces acting in 
the material.  Indeed, the principle of virtual work applies to all types of materials. 
 
Now, however, attention is restricted to the special case where the system is conservative, 
in the sense that the work done by the external loads and the internal forces can be written 
in terms of potential energy functions1.  Further, for brevity, assume also that the material 
is in static equilibrium, i.e. the kinetic energy term is zero. 
 
In other words, it is assumed that the internal virtual work term can be expressed in the 
form of a virtual potential energy function: 
 

 
vv

Udvdv  )(grad: uσ                        (3.9.29) 

 
Here, U is considered to be a function of u, and the variation is to be understood as in 
Eqn. 2.13.5,   ][, uuu u  UU  . 
 
If the loads can be regarded as functions of u only then, since they are conservative, they 
may be written as the gradient of a scalar potential: 
                                                 
1 The external loads being conservative would exclude, for example, cases of frictional loading 
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u
t

u
b








 tb UU
,            (3.9.30) 

 
Then, with 
 

u
u

u
u

 







 t
t

b
b

U
U

U
U ,         (3.9.31) 

 
and using the commutative property 2.13.3 of the variational operator, one arrives at  
 

  0












  u
σ

UdvUdsUUdv
v

b
s

t
v

          (3.9.32) 

 
The quantity inside the brackets is the total potential energy of the system.  This statement 
is the principle of stationary potential energy: the value of the quantity inside the 
parentheses, i.e.  uU , is stationary at the true solution u. 
 
Eqn. 3.9.32 is an example of a Variational Principle, that is, a principle expressed in the 
form of a variation of a functional.  Note that the principle of virtual work in the form 
3.9.8 is not a variational principle, since it is not expressed as the variation of one 
functional. 
 
Body Forces 
 
Body forces can usually be expressed in the form 3.9.30.  For example, with gravity 
loading, gb  , where g is the constant acceleration due to gravity.  Then ug  bU   

( ogb    and  ubub   , so dvdv   ubub  ). 
 
Material Form 
 
In the material form, one again has a stationary principle if one can write 

  UUB  /BU ,   UUT  /TU  (or, equivalently, replacing U with the motion χ ).  
In the case of dead loading, §3.7.1,  XTT   is independent of the motion so (similar to 
the case of gravity loading above) uT TU  with oT   and dVdV   χTχT  . 
 
Deformation Dependent Traction 
 
In many practical cases, the traction will depend on not only the motion, but also the 
strain.  In that case, one can write 
 

    
vvsss

dvdvdsdsds uσuσuσuσnunσut
σ

 grad:divdiv  

 
One might be able to then introduce a scalar function   such that 
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 , :    
  
 

u ε u ε
u ε

    with    σ
ε

σ
u







  ,div                   (3.9.33) 

 
In the material form, one would have NPT   with 

 
  

VS

dVdS FPχPχT
P

:Div   

 
and then one might be able to introduce a scalar function  Fχ,  such that 
 

F
F

χ
χ

 :







   with  P
F

P
χ







  ,Div                   (3.9.34) 

 
For example, considering again the fluid pressure example of §3.7.1, one can let pJ  
so that, using 1.15.7, T/  FF pJ .  Then 

1
T /


 

J
p FFP  , 2Div EP g  

and   pJdVdS χT . 
 
 
3.9.6 The Principle of Virtual Power 
 
The principle of virtual power is similar to the principle of virtual work, the only 
difference between them being that a virtual velocity v  is used in the former rather than 
a virtual displacement.  To derive the virtual power equation, multiply the equations of 
motion by the virtual velocity function, and integrate over the current configuration, 
giving 
 

   
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



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v

vvv

dvdvds

dv

dvdvdv
dt
d

vbdσvt

vb
x

v
σvσ

vb
x

v
σvσvbσv

v







:

:div

)(:divdiv

         (3.9.35) 

 
These equations are identical to the mechanical balance equations 3.8.16, except that the 
actual velocity is replaced with a virtual velocity.  The term  v

dvdσ :  is called the 

internal virtual power. 
 
Note that here, unlike the virtual displacement function in the work equation, the virtual 
velocity does not have to be infinitesimal.  This can be seen more clearly if one derives 
this equation directly from the virtual work equation.  If the infinitesimal virtual 
displacement u  occurs over an infinitesimal time interval t , the virtual velocity is the 
finite quantity t /u , which here is labelled v .  The virtual power equation can thus be 
obtained by dividing the virtual work equation through by t .  
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Again, supposing that the velocities are specified over that part of the surface vs  and 
tractions over σs , the principle of virtual power can be written for the case of a 
kinematically admissible virtual velocity field: 
 

 
vvvs

dv
dt
ddvdvds v
v

dσvbvt
σ

 :   Principle of Virtual Power  (3.9.36) 

  
In words, the principle of virtual power states that at any time t, the total virtual power of 
the external, internal and inertia forces is zero in any admissible virtual state of motion. 
 
 
3.9.7 Linearisation of the Internal Virtual Work 
 
In order to solve the virtual work equations in anything but the most simple cases, one 
must apply some approximate numerical method.  This will usually involve linearising 
the non-linear virtual work equations.  To this end, the internal virtual work term will be 
linearised in what follows. 
 
Material Description 
 
In the material description, one has 
 

    
V

dVW uEuES  :int                                           (3.9.37) 

 
in which the Green-Lagrange strain is considered to be a function of the displacement, 
Eqn. 2.2.46, and the PK2 stress is a function of the Green-Lagrange strain; the precise 
functional dependence of S on E will depend on the material under study (see Part IV). 
 
The linearisation of the variation of a function is given by (see §2.13.2) 
 

     uuuuu  ,,L intintint WWW                                 (3.9.38) 
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(3.9.39) 
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The linearization of the variation of the Green-Lagrange strain is given by 2.13.24, 
  uuE  GradGradsym T .  With the PK2 stress symmetric, one has, with 1.10.3h, 

1.10.31c, 
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                (3.9.40) 

 
For the second term in 3.9.39, from 2.13.22, the variation of E is 
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                                      (3.9.41) 

 
What remains is the calculation of the linearisation of the PK2 stress.  One has using the 
chain rule, 
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                                (3.9.42) 

 
Denote the fourth order tensor   EES  /  by C and assume that it has the minor 
symmetries1.12.10.  Then (see 3.9.41), with 
 

 uFE  Gradsym T                                               (3.9.43) 
 
the linear increments in 3.9.38 become 
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The first term is due to the current stress and is called the (initial) stress contribution.  
The second term depends on the material properties and is called the material 
contribution.  Solution formulations based on 3.9.44 are called total Lagrangian. 
 
Spatial Description 
 
The spatial description can be obtained by pushing forward the material description.  First 
note that the linearization of the Kirchhoff stress is, from 3.5.13, 
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                               (3.9.45) 

 
so that, as in the derivation of the material term in 3.9.44, and using 2.4.8, 
 

   

 
l

k
abcdldkcjbia x

u
CFFFF








uuτ

FuFFFuuτ

,

grad:, TTC

                                     (3.9.46) 

 
Define the fourth-order spatial tensor c  through 
 

abcdldkcjbiaijkl CFFFFJc 1                                         (3.9.47)   
 
so that 

  uuuτ  grad:, cJ                                           (3.9.48) 
 
Then, from 3.9.39, 
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                                      (3.9.49) 
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Solution formulations based on 3.9.49 are called updated-Lagrangian. 
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3.10 Convected Coordinates 
 
Some of the important results from sections 3.1-3.9 are now re-expressed in terms of 
convected coordinates.  As before, any relations expressed in symbolic form hold also in 
the convected coordinate system. 
 
 
3.10.1 The Stress Tensors 
 
Traction and Stress Components 
 
Consider a differential parallelepiped element in the current configuration bounded by the 
coordinate curves as in Fig. 3.10.1 (see Fig. 1.16.2).  The bounding vectors are 

2
2

1
1 , gg ΘΘ dd  and 3

3gΘd .  The surface area 1Sd  of a face of the elemental parallelepiped 
on which 1Θ  is constant, to which 1g  is normal, is then given by Eqn. 1.16.35, 
 

3211
1 ΘΘ= ddggSd                                                 (3.10.1) 

 
and similarly for the other surfaces. 
 

 
 

Figure 3.10.1: vector elements bounding surface elements 
 

The positive side of a face is defined as that whose outward normal is in the direction of 
the associated contravariant base vector.  The unit normal in  to a positive side is the same 
as the unit contravariant base vector; as in Eqn. 1.16.14, 
 

( )sum noˆ
ii

i
ii

g
ggn ==                                      (3.10.2) 

 
Let the force idF  acting on the surface element with normal in  be i

iSd t  (no sum over 

i), Fig. 3.10.2, so that it  is the traction (force per unit area). 
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Figure 3.10.2: traction acting on a surface element 
 
The components of it  along the unit covariant base vectors are denoted by jiσ : 
 

                           j
jj

ji
j

jii

g
ggt 1ˆ σσ ==                                               (3.10.3) 

 
with no sum over the j in the jjg  term;  jiσ  are called the physical stress 
components, Fig. 3.10.3. 
 

 
 

Figure 3.10.3: physical stress components 
 
Introduce now a new vector it  defined by 

 
    iiii g tt =      (no sum over i)                          (3.10.4) 

 
It will be shown that this vector is contravariant, that is, transforms between coordinate 
systems according to 1.17.3a (and so it  does not satisfy the vector transformation rule, 
hence the superscript in pointed brackets).  The components of it  along the covariant base 
vectors are denoted by jiσ : 
 

                           j
jii gt σ=                                                        (3.10.5) 

 
Comparing 3.10.3-5, 
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11 ĝn =1t



Section 3.10 

Solid Mechanics Part III  Kelly 384

 

                           ji
ii
jjji

g
g

σσ =      (no sum)                                       (3.10.6) 

 
Cauchy’s Law and the Cauchy Stress Tensor 
 
Cauchy’s law can now be derived in the same way as in §3.3, by considering a small 
tetrahedral free-body, Fig. 3.10.4.  The physical stress components ijσ  shown act on the 
negative sides of the surfaces and so act in directions opposite that of the corresponding 
components on the positive sides (a consequence of Cauchy’s Lemma).  It is required to 
determine the traction t in terms of the physical stress components and the unit normal n 
to the base area. 
 

 
 

Figure 3.10.4: free body diagram of a tetrahedral portion of material 
 
The normal to the base has components 
 

i
ii

i nn ggn ==                                                   (3.10.7) 
 

Consider the vector elements ad  and bd  shown in Fig. 3.10.5.  Define the surface area 
element Sd to be the vector with magnitude equal to twice the area of the tetrahedron base 
and in the direction of the normal to the base, so 
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where 321 ,, SSS ddd  are the surface element areas of the three coordinate sides of the 
parallelepiped of Fig. 3.10.1 (twice the area of the coordinate sides of the tetrahedron); 
from 3.10.2, 
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                                                  (3.10.9) 

 
with no sum over the i in the iig  term, or 
 

i
i

iii
i SdgndS gg =                                                   (3.10.10) 

 
 

 
 

Figure 3.10.5: vector element of area for the base of the tetrahedron 
 
The principle of linear momentum, in vector form, is then (cancelling out a factor of ½) 
 

0=− i
i SddS tt                                                   (3.10.11) 

 
From 3.10.4, 
 

i
i

iii

i dSnSd
g
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1                                        (3.10.12) 

 
and so 
 

ji
ji

i
i nn gtt σ==                                              (3.10.13) 

 
Defining the (symmetric) Cauchy stress tensor σ  through 

 
ji

ij ggσ ⊗= σ      Cauchy Stress Tensor         (3.10.14) 
 
one arrives at Cauchy’s law nσt = . 
 
The Cauchy stress is naturally a contravariant tensor because the normal vector upon 
which it operates to produce the traction is naturally represented in the form of a covariant 
vector (see 3.10.2). 
 
Note that the stress can also be expressed in the form 
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j
i gtσ ⊗=                                                   (3.10.15) 

 
 
Other Stress Tensors 
 
The PK1, PK2 and Kirchhoff stress tensors are  
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                                                  (3.10.16) 

 
By definition, στ J= , and so ijij Jστ = .  By definition, T1 −−= σFFS J , and so, from 
2.9.8, 
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Thus, as seen already, the Kirchhoff stress is the push-forward of the PK2 stress. 
 
Similarly, by definition T−= σFP J  and so 
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                      (3.10.18) 

 
 
3.10.2 The Equations of Motion 
 
The Equations of motion have been given in the symbolic form by 3.6.2 and 3.6.9.  To 
express these in curvilinear coordinates, recall the definition of the divergence of a tensor, 
1.18.28, 
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The spatial and material descriptions of the equations of motion are then 
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