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3.5 Stress Measures for Large Deformations 
 
Thus far, the surface forces acting within a material have been described in terms of the 
Cauchy stress tensor σ .  The Cauchy stress is also called the true stress, to distinguish it 
from other stress tensors, some of which will be discussed below.  It is called the true 
stress because it is a true measure of the force per unit area in the current, deformed, 
configuration.  When the deformations are small, there is no distinction to be made 
between this deformed configuration and some reference, or undeformed, configuration, 
and the Cauchy stress is the sensible way of describing the action of surface forces.  
When the deformations are large, however, one needs to refer to some reference 
configuration.  In this case, there are a number of different possible ways of defining the 
action of surface forces; some of these stress measures often do not have as clear a 
physical meaning as the Cauchy stress, but are useful nonetheless. 
 
 
3.5.1 The First Piola – Kirchhoff Stress Tensor 
 
Consider two configurations of a material, the reference and current configurations.  
Consider now a vector element of surface in the reference configuration, dSN , where dS  
is the area of the element and N is the unit normal.  After deformation, the material 
particles making up this area element now occupy the element defined by dsn , where ds  
is the area and n is the normal in the current configuration.  Suppose that a force fd  acts 
on the surface element (in the current configuration).  Then by definition of the Cauchy 
stress 
 

dsd nσf =       (3.5.1) 
 
The first Piola-Kirchhoff stress tensor P (which will be called the PK1 stress for 
brevity) is defined by 
 

dSd NPf =         (3.5.2) 
 
The PK1 stress relates the force acting in the current configuration to the surface element 
in the reference configuration.  Since it relates to both configurations, it is a two-point 
tensor. 
 
The (Cauchy) traction vector was defined as 
 

ds
dft = ,     nσt =                                                 (3.5.3) 

 
Similarly, one can introduce a PK1 traction vector T such that 
 

dS
dfT = ,     NPT =                                              (3.5.4) 

 
Whereas the Cauchy traction is the actual physical force per area on the element in the 
current configuration, the PK1 traction is a fictitious quantity – the force acting on an 
element in the current configuration divided by the area of the corresponding element in 
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the reference configuration.  Note that, since dSdsd Ttf == , it follows that T and t act 
in the same direction (but have different magnitudes), Fig. 3.5.1.  
 

 
 

Figure 3.5.1: Traction vectors 
 
 
Uniaxial Tension 
 
Consider a uniaxial tensile test whereby a specimen is stretched uniformly by a constant 
force f, Fig. 3.5.2.  The initial cross-sectional area of the specimen is 0A  and the cross-
sectional area of the specimen at time t is )(tA .  The Cauchy (true) stress is  
 

)(
)(

tA
t fσ =                                                       (3.5.5) 

 
and the PK1 stress is  
 

0A
fP =                                                          (3.5.6) 

 
This stress measure, force over area of the undeformed specimen, as used in the uniaxial 
tensile test, is also called the engineering stress. 
 
 

 
 

Figure 3.5.2: Uniaxial tension of a bar 
 
 
The Nominal Stress 
 
The PK1 stress tensor is also called the nominal stress tensor.  Note that many authors  
use a different definition for the nominal stress, namely PNT = , and then define the 
PK1 stress to be the transpose of this P.  Thus all authors use the same definition for the 
PK1 stress, but a slightly different definition for the nominal stress. 

current 
configuration 

reference 
configuration 

dS ds

N n tT
dSdsd Ttf ==

f

current 
configuration 



Section 3.5 
 

Solid Mechanics Part III            Kelly 343

 
Relation between the Cauchy and PK1 Stresses 
 
From the above definitions,  
 

dSds NPnσ =         (3.5.7) 
 
Using Nanson’s formula, 2.2.59, dSJds NFn T−= , 
 

T1

T

FPσ
FσP

−

−

=

=

J
J

     PK1 stress      (3.5.8) 

 
The Cauchy stress is symmetric, but the deformation gradient is not.  Hence the PK1 
stress tensor is not symmetric, and this restricts its use as an alternative stress measure to 
the Cauchy stress measure.  In fact, this lack of symmetry and lack of a clear physical 
meaning makes it uncommon for the PK1 stress to be used in the modeling of materials.  
It is, however, useful in the description of the momentum balance laws in the material 
description, where P plays an analogous role to that played by the Cauchy stress σ  in the 
equations of motion (see later). 
 
 
3.5.2 The Second Piola – Kirchhoff Stress Tensor 
 
The second Piola – Kirchhoff stress tensor, or the PK2 stress, S, is defined by 
 

T1 −−= FσFS J      PK2 stress         (3.5.9) 
 
Even though the PK2 does not admit a physical interpretation (except in the simplest of 
cases, but see the interpretation below), there are three good reasons for using it as a 
measure of the forces acting in a material.  First, one can see that 
 

( ) ( ) ( ) TT1T1TTTT1 −−−−−− == FσFFσFσFF  
 
and since the Cauchy stress is symmetric, so is the PK2 stress: 
 

TSS =            (3.5.10) 
 
A second reason for using the PK2 stress is that, together with the Euler-Lagrange strain 
E, it gives the power of a deforming material (see later).  Third, it is parameterized by 
material coordinates only, that is, it is a material tensor field, in the same way as the 
Cauchy stress is a spatial tensor field. 
 
Note that the PK1 and PK2 stresses are related through 
 

PFSFSP 1, −==                                           (3.5.11) 
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The PK2 stress can be interpreted as follows: take the force vector in the current 
configuration fd  and locate a corresponding vector in the undeformed configuration 
according to fFf dd 1−= .  The PK2 stress tensor is this fictitious force divided by the 
corresponding  area element in the reference configuration: dSd SNf = , and 3.5.9 follows 
from 3.5.2, 3.5.8: 
 

dSJdSd NFσNPf T−==  
 
 
3.5.3 Alternative Stress Tensors 
 
Some other useful stress measures are described here. 
 
The Kirchhoff Stress 
 
The Kirchhoff stress tensor τ  is defined as 
 

στ J=         Kirchhoff Stress                    (3.5.12) 
 
It is a spatial tensor field parameterized by spatial coordinates.  One reason for its use is 
that, in many equations, the Cauchy stress appears together with the Jacobian and the use 
of τ  simplifies formulae. 
 
Note that the Kirchhoff stress is the push forward of the PK2 stress; from 2.12.9b, 
2.12.11b, 
 

( )
( ) T1#1

*

T#
*

−−− ==

==

τFFτS

FSFSτ

χ

χ
                                         (3.5.13) 

 
The Corotational Cauchy Stress 
 
The corotational stress σ̂  is defined as 
 

σRRσ Tˆ =         Corotational Stress                (3.5.14) 
 
where R is the orthogonal rotation tensor.  Whereas the Cauchy stress is related to the 
PK2 stress through T1 SFFσ −= J , the corotational stress is related to the PK2 stress 
through (with F replaced by the right (symmetric) stretch tensor U): 
 

( ) ( ) ( ) σRRUFσFUUσFFUSUUσ TT1T11T1ˆ ==== −−−−−− JJJ         (3.5.15) 
 
The corotational stress is defined on the intermediate configuration of Fig. 2.10.8.  It can 
be regarded as the push forward of the PK2 stress from the reference configuration 
through the stretch U, scaled by 1−J  (Eqn. 2.12.28b): 
 

( ) ( ) ( ) USUUSUUGUGggSσ GU
1T111#

*
1 ˆˆˆ −−−−− ==⊗=⊗== JJSJSJJ ji

ij
ji

ijχ  (3.5.16) 
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or as the pull-back of the Cauchy stress with respect to R (Eqn. 2.12.27f): 
 

( ) ( ) σRRggσσ gR
T#1

* ˆˆˆ =⊗== −
ji

ijσχ                               (3.5.17) 
 
The Biot Stress 
 
The Biot (or Jaumann) stress tensor BT  is defined as 
 

USPRT == T
B         Biot Stress                    (3.5.18) 

 
From 3.5.11, it is similar to the PK1 stress, only with F replaced by U. 
 
Example 
 
Consider a pre-stressed thin plate with 0

111 σσ = , 0
222 σσ = , that is, it has a non-zero 

stress although no forces are acting1, Fig. 3.5.3.  In this initial state, IF =  and, 
considering a two-dimensional state of stress, 
 

⎥
⎦

⎤
⎢
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⎡
====== 0

2

0
1

B 0
0ˆ
σ

σ
TτσSPσ  

 
The material is now rotated as a rigid body o45  counterclockwise – the stress-state is 
“frozen” within the material and rotates with it.  Then  
 

⎥
⎦

⎤
⎢
⎣

⎡ −
==

2/12/1
2/12/1RF  

 
The stress components with respect to the rotated *

ix  axes shown in Fig. 3.5.3b are 
0
1

*
11 σσ = , etc.; the components with respect to the spatial axes ix  can be found from the 

stress transformation rule [ ] [ ][ ][ ] [ ][ ][ ]T**T RσRQσQσ == , and so 
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Note that the Cauchy stress changes with this rigid body rotation.  Further, with 1=J , 
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Note that the PK1 stress is not symmetric.  Now attach axes *x  to the material and rotate 
these axes with the specimen as it rotates, as in Fig. 3.5.3b.  The components with respect 

                                                 
1 for example a piece of metal can be deformed; when the load is removed it is often pre-stressed –  there is 
a non-zero state of stress in the material 
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to these rotated axes give the corotational stress; the corotational stress is the stress in a 
body, taking out the stress changes caused by rigid body rotations – one says that the 
corotational stress (and PK2 stress) “rotate” with the body. 
 

 
 

Figure 3.5.3: Pre-stressed material; (a) original position, (b) rotated configuration 
 

■  
 
 
3.5.4 Small deformations 
 
From §2.7, when the deformations are small, neglecting terms involving products of 
displacement gradients, 
 

)grad(O)grad(Ograd 2 uIuuIF +=++=                             (3.5.19) 
 
Here, )grad(O u  means terms of the order of displacement gradients (and higher) have 
been neglected and 2)grad(O u  means terms of the order of products of displacement 
gradients (and higher) have been neglected.  Also, 
 

( ) )grad(O1)grad(Odiv1)grad(Ograddet
det

22 uuuuuI
F

+=++=++=

=J
         (3.5.20) 

 
From 3.5.8 and 3.5.9, using 3.5.19-20, one has 

 

)grad(O)grad(O
)grad(O)grad(O

T

T

uSuσFSFσ
uPuσFPσ

+=+→=

+=+→=

J
J

                      (3.5.21) 

 
In the linear theory then, with 0)grad(O →u , the stress measures encountered in this 
section are all equivalent. 
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3.5.5 Objective Stress Tensors 
 
In order to ascertain the objectivity of the stress tensors, first note that, by definition, force 
is an objective vector, and therefore so also is the traction vector.  Similarly for the 
normal vector.  The normal and traction vectors transform under an observer 
transformation according to 2.8.10, Qnn =*  and Qtt =* .  Then 
 

( ) *T**T*T nQQσtnσQtQσnt =→=→=                      (3.5.22) 
 
and so T* QQσσ = ; according to 2.8.12, the Cauchy stress is objective.  The PK2 stress S 
is objective, since it is a material tensor unaffected by an observer transformation.  For 
the PK1 stress, using 2.8.23, 
 

( ) ( ) ( )TTTT**** −−−
=== σFQQFQQσFσP JJJ                     (3.5.23) 

 
and so, according to 2.8.16, P is objective (transforming like a vector, being a two-point 
tensor).  
 
 
3.5.6 Objective Stress Rates 
 
One needs to incorporate stress rates in models of materials where the response depends 
on the rate of stressing, for example with viscoelastic materials.  As discussed in §2.8.5, 
the rates of objective tensors are not necessarily objective.  As discussed in §2.12.3, the 
Lie derivative of a spatial second order tensor is objective.  For the Cauchy stress, there 
are a number of different objective rates one can use, based on the Lie derivative (see 
Eqns. 2.8.35-36, 2.12.41, 2.12.44): 
 
 Cotter-Rivlin stress rate σlσlσ ++ T&   σb

vL=  
 Jaumann stress rate  σwwσσ +−&   ( )σσ #

v
b
v2

1 LL +=           (3.5.24) 
 Oldroyd stress rate2  Tσllσσ −−&   σ#

vL=  
   
Stress rates of other spatial stress tensors can be defined in the same way, for example the 
Oldroyd rate of the Kirchhoff stress tensor is Tτllττ −−& . 
 
The material derivative of the material PK2 stress tensor, S& , is objective.  The push 
forward of S&  is, from 2.12.9b, 
 

( ) T#
* FSFS && =χ                                                (3.5.25) 

 

                                                 
2 this is sometimes called the contravariant Oldroyd stress rate, to distinguish it from the Cotter-Rivlin rate, 
which is also sometimes called the covariant Oldroyd stress rate  
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This push forward, scaled by the inverse of the Jacobian, T1 FSF &−J  is called the 
Truesdell stress rate.  This can be expressed in terms of the Cauchy stress by using 
3.5.9, and then 2.5.20, 2.5.5: 
 

( )

( )σdσllσσ

FFσFFσFFσFFσFFFFσFF

trT

T
.

T1T1T
.

1T11TT11

+−−=
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⎞
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⎜
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⎛
+++= −−−−−−−−−−−−

&

&& JJJJJJ
dt
dJ

 

(3.5.26) 
 
Thus far, objective rates have been constructed by pulling back, taking derivatives and 
pushing forward.  One can construct objective rates also by pulling back and pushing 
forward with the rotation tensor R only, since it is the rotation which causes the stress 
rates to be non-objective.  For example, σ#

vL , setting RF = , is, from 3.5.17 and 
2.12.27b, 
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              (3.5.27) 

 
where TRRΩ &=R  is the skew-symmetric angular velocity tensor 2.6.3.  The stress rate 
3.5.27 is called the Green-Naghdi stress rate.  From the above, the Green-Naghdi rate is 
the push forward of the time derivative of the corotational stress. 
 
Example 
 
Consider again the example discussed at the end of §3.5.3, only let the plate rotate at 
constant angular velocity ω , so  
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
−
−−

==⎥
⎦

⎤
⎢
⎣

⎡ −
==

tt
tt

tt
tt

ωω
ωω

ω
ωω
ωω

sincos
cossin

,
cossin
sincos

RFRF &&  

 
Again, using the stress transformation rule [ ] [ ][ ][ ] [ ][ ][ ]T**T RσRQσQσ == ,  
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and, with 1=J , 
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Also, 
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⎥
⎦

⎤
⎢
⎣

⎡ −
===== −

01
10T1 ωRΩRRFFwl &&  

 
Then 
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and 
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For a rigid body rotation, it can be seen that the definitions of the Cotter-Rivlin, Jaumann, 
Oldroyd, Truesdell and Green-Naghdi rates are equivalent, and they are all zero: 
 

0σwwσσ =+−&  
 

This is as expected since objective stress rates for two configurations which differ by a 
rigid body rotation will, by definition, be equal (the stress components will not change); 
they are zero in the reference configuration and so will be zero in the rotated 
configuration.  

■  
 
 
3.5.7 Problems 
 
1.  Consider the case of uniaxial stress, where a material with initial dimensions length 

0l , breadth 0w  and height 0h  deforms into a component with dimensions length l , 
breadth w  and height h .  The only non-zero Cauchy stress component is 11σ , 
acting in the direction of the length of the component. 
(a) write down the motion equations in the material description, )(Xx χ=  
(b) calculate the deformation gradient F and confirm that Fdet=J  is the ratio of 

the volume in the current configuration to that in the initial configuration 
(c) Calculate the PK1 stress.  How is it related to the Cauchy stress for this uniaxial 

stress-state? 
(d) calculate the PK2 stress 

2. A material undergoes the deformation 
3321211 ,,3 XxXtXxtXx =+==  

 The Cauchy stress at a point in the material is 
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02

tt
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(a) Calculate the PK1 and PK2 stresses at the point (check that PK2 is symmetric) 
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(b) Calculate the expressions ESdσFP && :,:,: J  (for E& , use the expression 
2.5.18b, dFFE T=& ).  In these expressions, d is the rate of deformation tensor.  
(You should get the same result for all three cases, since they all give the rate of 
internal work done by the stresses during the deformation, per unit reference 
volume – see later) 

3.  Show that the Oldroyd rate of the Kirchhoff stress, Tτllττ −−& , is equal to the 
Jacobian times the Truesdell stress rate of the Cauchy stress, 3.5.26. 


