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3.3 The Cauchy Stress Tensor 
 
 
3.3.1 The Traction Vector 
 
The traction vector was introduced in Part I, §3.3.  To recall, it is the limiting value of 
the ratio of force over area; for Force FΔ  acting on a surface element of area SΔ , it is 
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and n denotes the normal to the surface element.  An infinite number of traction vectors 
act at a point, each acting on different surfaces through the point, defined by different 
normals. 
 
 
3.3.2 Cauchy’s Lemma 
 
Cauchy’s lemma states that traction vectors acting on opposite sides of a surface are 
equal and opposite1.  This can be expressed in vector form: 
 

)()( nn tt −−=  Cauchy’s Lemma      (3.3.2) 
 
This can be proved by applying the principle of linear momentum to a collection of 
particles of mass mΔ  instantaneously occupying a small box with parallel surfaces of 
area sΔ , thickness δ  and volume sv Δ=Δ δ , Fig. 3.3.1.  The resultant surface force 
acting on this matter is ss Δ+Δ − )()( nn tt . 
 

 
 

Figure 3.3.1: traction acting on a small portion of material particles 
 
The total linear momentum of the matter is ∫∫ ΔΔ

=
mV

dmdv vvρ .  By the mean value 

theorem (see Appendix A to Chapter 1, §1.B.1), this equals mΔv , where v  is the velocity 
at some interior point.  Similarly, the body force acting on the matter is vdv

V
Δ=∫Δ bb , 

where b  is the body force (per unit volume) acting at some interior point.  The total mass 

                                                 
1 this is equivalent to Newton’s (third) law of action and reaction – it seems like a lot of work to prove this 
seemingly obvious result but, to be consistent, it is supposed that the only fundamental dynamic laws 
available here are the principles of linear and angular momentum, and not any of Newton’s laws 
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can also be written as vdvm
V

Δ==Δ ∫Δ ρρ .  From the principle of linear momentum, 

Eqn. 3.2.7, and since mΔ  does not change with time, 
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Dividing through by sΔ  and taking the limit as 0→δ , one finds that )()( nn tt −−= . 
Note that the values of )()( , nn tt −  acting on the box with finite thickness are not the same 
as the final values, but approach the final values at the surface as 0→δ . 
 
 
3.3.3 Stress 
 
In Part I, the components of the traction vector were called stress components, and it was 
illustrated how there were nine stress components associated with each material particle.  
Here, the stress is defined more formally, 
 
Cauchy’s Law 
 
Cauchy’s Law states that there exists a Cauchy stress tensor σ  which maps the normal 
to a surface to the traction vector acting on that surface, according to 
 

jiji nt σ== ,nσt        Cauchy’s Law                   (3.3.4) 
 
or, in full, 
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Note: 
• many authors define the stress tensor as σnt = .  This amounts to the definition used here 

since, as mentioned in Part I, and as will be (re-)proved below, the stress tensor is symmetric, 

jiij σσ == ,Tσσ  
• the Cauchy stress refers to the current configuration, that is, it is a measure of force per unit 

area acting on a surface in the current configuration. 
 
Stress Components 
 
Taking Cauchy’s law to be true (it is proved below), the components of the stress tensor 
with respect to a Cartesian coordinate system are, from 1.9.4 and 3.3.4, 
 

( )j
ijiij

eteeσe ⋅==σ                                                (3.3.6) 
 
which is the ith component of the traction vector acting on a surface with normal je .  
Note that this definition is inconsistent with that given in Part I, §3.2 – there, the first 
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subscript denoted the direction of the normal – but, again, the two definitions are 
equivalent because of the symmetry of the stress tensor.  
 
The three traction vectors acting on the surface elements whose outward normals point in 
the directions of the three base vectors je  are 
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      (3.3.7) 

 
Eqns. 3.3.6-7 are illustrated in Fig. 3.3.2. 
 

 
 
Figure 3.3.2: traction acting on surfaces with normals in the coordinate directions; 

(a) traction vectors, (b) stress components 
 
 
Proof of Cauchy’s Law 
 
The proof of Cauchy’s law essentially follows the same method as used in the proof of 
Cauchy’s lemma. 
 
Consider a small tetrahedral free-body, with vertex at the origin, Fig. 3.3.3.  It is required 
to determine the traction t in terms of the nine stress components (which are all shown 
positive in the diagram). 
 
Let the area of the base of the tetrahedran, with normal n, be sΔ .  The area 1ds  is then 

αcossΔ , where α  is the angle between the planes, as shown in Fig. 3.3.3b; this angle is 
the same as that between the vectors n and 1e , so ( ) snss Δ=Δ⋅=Δ 111 en , and similarly 
for the other surfaces: sns Δ=Δ 22  and sns Δ=Δ 33 . 
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Figure 3.3.3: free body diagram of a tetrahedral portion of material; (a) traction 
acting on the material, (b) relationship between surface areas and normal 

components 
 
The resultant surface force on the body, acting in the 1x  direction, is 
 

snsnsnst Δ−Δ−Δ−Δ 3132121111 σσσ  
 
Again, the momentum is MΔv , the body force is vΔb  and the  mass is 

shvm Δ=Δ=Δ )3/(ρρ , where h is the perpendicular distance from the origin (vertex) to 
the base.  The principle of linear momentum then states that 
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Again, the values of the traction and stress components on the faces will in general vary 
over the faces, so the values used in this equation are average values over the faces. 
 
Dividing through by sΔ , and taking the limit as 0→h , one finds that  
 

3132121111 nnnt σσσ ++=  
 
and now these quantities, 1312111 ,,, σσσt , are the values at the origin.  The equations for 
the other two traction components can be derived in a similar way. 
 
Normal and Shear Stress 
 
The stress acting normal to a surface is given by 
 

)(ntn ⋅=Nσ                                                      (3.3.8) 
 
The shear stress acting on the surface can then be obtained from 
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22)(
NS σσ −= nt                                                  (3.3.9) 

 
Example 
 
The state of stress at a point is given in the matrix form 
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Determine 
(a) the traction vector acting on a plane through the point whose unit normal is 

321 ˆ)3/2(ˆ)3/2(ˆ)3/1(ˆ eeen −+=  
(b) the component of this traction acting perpendicular to the plane 
(c) the shear component of traction. 
 
Solution 
 
(a) The traction is 
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or 321
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(b) The component normal to the plane is the projection of )ˆ(nt  in the direction of n̂ , i.e. 
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(c) The shearing component of traction is  
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