Section 3.3

3.3 The Cauchy Stress Tensor

3.31 The Traction Vector

The traction vector was introduced in Part I, §3.3. To recall, it is the limiting value of
the ratio of force over area; for Force AF acting on a surface element of area AS , it is

t™ = lim — (3.3.1)

and n denotes the normal to the surface element. An infinite number of traction vectors
act at a point, each acting on different surfaces through the point, defined by different
normals.

3.3.2 Cauchy’s Lemma

Cauchy’s lemma states that traction vectors acting on opposite sides of a surface are
equal and opposite’. This can be expressed in vector form:

Cauchy’s Lemma (3.3.2)

This can be proved by applying the principle of linear momentum to a collection of
particles of mass Am instantaneously occupying a small box with parallel surfaces of
area AS, thickness 0 and volume Av = 0As, Fig. 3.3.1. The resultant surface force

acting on this matter is t™As +t™As.

t(ﬂ)

thickness o

t(—")

Figure 3.3.1: traction acting on a small portion of material particles

The total linear momentum of the matter is LV pvav = J.A vdm. By the mean value
m

theorem (see Appendix A to Chapter 1, §1.B.1), this equals VAm, where V is the velocity
at some interior point. Similarly, the body force acting on the matter is J.AV bdv = bAv,

where b is the body force (per unit volume) acting at some interior point. The total mass

" this is equivalent to Newton’s (third) law of action and reaction — it seems like a lot of work to prove this
seemingly obvious result but, to be consistent, it is supposed that the only fundamental dynamic laws
available here are the principles of linear and angular momentum, and not any of Newton’s laws
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can also be written as Am = LV pdv = pAv . From the principle of linear momentum,
Eqn. 3.2.7, and since Am does not change with time,
dv dv

t™As+tWAs + bAv = i[VAm] = AM— = pAV— = pSAS
dt dt dt

av

" (3.3.3)

Dividing through by As and taking the limit as & — 0, one finds that t™ = —t‘™
Note that the values of t™, t"™ acting on the box with finite thickness are not the same
as the final values, but approach the final values at the surface as 0 — 0.

3.3.3 Stress

In Part I, the components of the traction vector were called stress components, and it was
illustrated how there were nine stress components associated with each material particle.
Here, the stress is defined more formally,

Cauchy’s Law

Cauchy’s Law states that there exists a Cauchy stress tensor ¢ which maps the normal
to a surface to the traction vector acting on that surface, according to

t=on, t, =oyn; Cauchy’s Law (3.3.4)
or, in full,
t,=o,n +o,N, +o;N;
t, =0, N +0,N, +0,N, (3.3.5)
t,=0yN +0o3,N, + o33N,
Note:

e many authors define the stress tensor as t =no . This amounts to the definition used here
since, as mentioned in Part I, and as will be (re-)proved below, the stress tensor is symmetric,

— T —

e the Cauchy stress refers to the current configuration, that is, it is a measure of force per unit
area acting on a surface in the current configuration.

Stress Components

Taking Cauchy’s law to be true (it is proved below), the components of the stress tensor
with respect to a Cartesian coordinate system are, from 1.9.4 and 3.3.4,

ce —e -t (3.3.6)

which is the ith component of the traction vector acting on a surface with normal e; .
Note that this definition is inconsistent with that given in Part [, §3.2 — there, the first
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subscript denoted the direction of the normal — but, again, the two definitions are
equivalent because of the symmetry of the stress tensor.

The three traction vectors acting on the surface elements whose outward normals point in
the directions of the three base vectors e; are

(er) _
t" =0, +0,¢€,+0;6€,

t =ce,, ) = o e, + o€, + o8, (3.3.7)

(93) _
t' =o0,e +0,e,+0,€,

Eqns. 3.3.6-7 are illustrated in Fig. 3.3.2.

X3 X3
€3
033
¢ |
23
! tlk) e -
| 32
: '\-—>e 031
ﬂ) : >0y
e o ol s, "
4 X,
X
(a) (b)

Figure 3.3.2: traction acting on surfaces with normals in the coordinate directions;
(a) traction vectors, (b) stress components

Proof of Cauchy’s Law

The proof of Cauchy’s law essentially follows the same method as used in the proof of
Cauchy’s lemma.

Consider a small tetrahedral free-body, with vertex at the origin, Fig. 3.3.3. It is required
to determine the traction t in terms of the nine stress components (which are all shown
positive in the diagram).

Let the area of the base of the tetrahedran, with normal n, be As. The area ds, is then
Ascosa , where « is the angle between the planes, as shown in Fig. 3.3.3b; this angle is
the same as that between the vectors n and e,, so As, = (n-e, )As = n,As, and similarly

for the other surfaces: As, =n,As and As, =n,As.
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(a) (b)

Figure 3.3.3: free body diagram of a tetrahedral portion of material; (a) traction
acting on the material, (b) relationship between surface areas and normal
components

The resultant surface force on the body, acting in the X, direction, is
t,As —o,,n,AS —o,N,AS — o ;N AS
Again, the momentum is VAM , the body force is bAv and the mass is

Am = pAv = p(h/3)As, where h is the perpendicular distance from the origin (vertex) to
the base. The principle of linear momentum then states that

= dv,
t,As —o,,n,As — 5,,N,AS — ;N As + b, (h/3)As = ,5(h/3)Asd—t1

Again, the values of the traction and stress components on the faces will in general vary
over the faces, so the values used in this equation are average values over the faces.

Dividing through by As, and taking the limit as h — 0, one finds that
L, =o,n +o,n, +o;n,

and now these quantities, t,, o,,, 0,,, 05, are the values at the origin. The equations for
the other two traction components can be derived in a similar way.

Normal and Shear Stress

The stress acting normal to a surface is given by
oy, =n-t" (3.3.8)

The shear stress acting on the surface can then be obtained from
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t(n)

oy = [t™] - o2 (3.3.9)

Example

The state of stress at a point is given in the matrix form

Determine

(a) the traction vector acting on a plane through the point whose unit normal is
n=(1/3)e, +(2/3)e, —(2/3)e,

(b) the component of this traction acting perpendicular to the plane

(c) the shear component of traction.

Solution

(a) The traction is

t" | [o, o, osln 12 1 371 1—2
t" =0, 0, O,|N =§1 2 -2 2 =3 9
t"| |oy, oy, oy|n 3 -2 1 (-2 -3

or t™ =(-2/3)e, +3¢, —¢&,.
(b) The component normal to the plane is the projection of t™ in the direction of n, i.e.
oy =t h=(=2/3)1/3)+3(2/3)+(2/3)=22/9 = 2.4.
(c) The shearing component of traction is

os =t™ —(22/9)h
=[[(=2/3)=(22/27)F, +[3—(44/27)k, + [~ 1+ 44/27), ]
=[(=40/27)e, +(37/27)&, + (17/27)&, ]

i.e. of magnitude \/(—40/27)2 +(37/27)> +(17/27)* = 2.1, which equals

Aoy |2
(n) 2
t —0oy -
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