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2 Kinematics 
 
Kinematics is concerned with expressing in mathematical form the deformation and motion of 
materials.  In what follows, a number of important quantities, mainly vectors and second-
order tensors, are introduced.  Each of these quantities, for example the velocity, deformation 
gradient or rate of deformation tensor, allows one to describe a particular aspect of a 
deforming material. 
 
No consideration is given to what is causing the deformation and movement – the cause is the 
action of forces on the material, and these will be discussed in the next chapter. 
 
The first section introduces the material and spatial coordinates and descriptions.  The second 
and third sections discuss the strain tensors.  The fourth, fifth and sixth sections deal with 
rates of deformation and rates of change of kinematic quantities.  The theory is specialised to 
small strain deformations in section 7.  The notion of objectivity and the related topic of rigid 
rotations are discussed in sections 8 and 9. The final sections, 10-13, deal with kinematics 
using the convected coordinate system, and include the important notions of push-forward, 
pull-back and the Lie time derivative. 
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2.1 Motion 
 
 
2.1.1 The Material Body and Motion 
 
Physical materials in the real world are modeled using an abstract mathematical entity 
called a body.  This body consists of an infinite number of material particles1.  Shown in 
Fig. 2.1.1a is a body B with material particle P.  One distinguishes between this body and 
the space in which it resides and through which it travels.  Shown in Fig. 2.1.1b is a 
certain point x  in Euclidean point space E.  
 

 
 
Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration 

of the body 
 
By fixing the material particles of the body to points in space, one has a configuration of 
the body χ , Fig. 2.1.1c.  A configuration can be expressed as a mapping of the particles 
P  to the point x , 
 

 Px χ                                                        (2.1.1) 

 
A motion of the body is a family of configurations parameterised by time t,  
 

 ,P tx χ                                                      (2.1.2) 

 
At any time t, Eqn. 2.1.2 gives the location in space x  of the material particle P , Fig. 
2.1.2. 
 
 

                                                 
1 these particles are not the discrete mass particles of Newtonian mechanics, rather they are very small 
portions of continuous matter; the meaning of particle is made precise in the definitions which follow 
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Figure 2.1.2: a motion of material 
 
 
The Reference and Current Configurations 
 
Choose now some reference configuration, Fig. 2.1.3.  The motion can then be 
measured relative to this configuration.  The reference configuration might be the 
configuration occupied by the material at time 0t , in which case it is often called the 
initial configuration.  For a solid, it might be natural to choose a configuration for which 
the material is stress-free, in which case it is often called the undeformed configuration.  
However, the choice of reference configuration is completely arbitrary. 
 
Introduce a Cartesian coordinate system with base vectors iE  for the reference 

configuration.  A material particle P  in the reference configuration can then be assigned a 
unique position vector iiX EX   relative to the origin of the axes.  The coordinates 

 321 ,, XXX  of the particle are called material coordinates (or Lagrangian coordinates 

or referential coordinates). 
 
Some time later, say at time t, the material occupies a different configuration, which will 
be called the current configuration (or deformed configuration).  Introduce a second 
Cartesian coordinate system with base vectors ie  for the current configuration, Fig. 2.1.3.  

In the current configuration, the same particle P  now occupies the location x , which can 
now also be assigned a position vector iix ex  .  The coordinates  321 ,, xxx  are called 

spatial coordinates (or Eulerian coordinates). 
 
Each particle thus has two sets of coordinates associated with it.  The particle’s material 
coordinates stay with it throughout its motion.  The particle’s spatial coordinates change 
as it moves. 
 
The coordinate systems do not have to be Cartesian. For example, suppose one has a 
rectangular block which deforms into a curved beam (part of a circle). In that case it 
would be sensible to employ a rectangular Cartesian coordinate system with coordinates 
 321 ,, XXX  to describe the reference configuration, and a polar coordinate system 

 , ,r z  to describe the current configuration. 

1t
2t

P


P

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Figure 2.1.3: reference and current configurations 
 
In practice, the material and spatial axes are usually taken to be coincident so that the base 
vectors iE  and ie  are the same, as in Fig. 2.1.4.  Nevertheless, the use of different base 

vectors E and e for the reference and current configurations is useful even when the 
material and spatial axes are coincident, since it helps distinguish between quantities 
associated with the reference configuration and those associated with the spatial 
configuration (see later). 
 

 
 

Figure 2.1.4: reference and current configurations with coincident axes 
 
In terms of the position vectors, the motion 2.1.2 can be expressed as a relationship 
between the material and spatial coordinates,  
 

 tXXXxt ii ,,,),,( 321 Xχx      Material description             (2.1.3) 

 
or the inverse relation 
 

 txxxXt ii ,,,),,( 321
11   xχX      Spatial description               (2.1.4) 

 
If one knows the material coordinates of a particle then its position in the current 
configuration can be determined from 2.1.3.  Alternatively, if one focuses on some 
location in space, in the current configuration, then the material particle occupying that  
position can be determined from 2.1.4.  This is illustrated in the following example. 
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Example (Extension of a Bar) 
 
Consider the motion 
 

3322111 ,,3 XxXxtXtXx                               (2.1.5) 

 
These equations are of the form 2.1.3 and say that “the particle that was originally at 
position X is now, at time t, at position x”.  They represent a simple translation and 
uniaxial extension of material as shown in Fig. 2.1.5.  Note that xX   at 0t . 
 

 
 

Figure 2.1.5: translation and extension of material 
 
Relations of the form 2.1.4 can be obtained by inverting 2.1.5: 
 

3322
1

1 ,,
31

xXxX
t

tx
X 




  

 
These equations say that “the particle that is now, at time t, at position x was originally at 
position X”. 

■  
 
 
Convected Coordinates 
 
The material and spatial coordinate systems used here are fixed Cartesian systems.  An 
alternative method of describing a motion is to attach the material coordinate system to 
the material and let it deform with the material.  The motion is then described by defining 
how this coordinate system changes.  This is the convected coordinate system.  In 
general, the axes of a convected system will not remain mutually orthogonal and a 
curvilinear system is required.  Convected coordinates will be examined in §2.10. 
 
 
2.1.2 The Material and Spatial Descriptions 
 
Any physical property (such as density, temperature, etc.) or kinematic property (such as 
displacement or velocity) of a body can be described in terms of either the material 
coordinates X or the spatial coordinates x, since they can be transformed into each other 
using 2.1.3-4.  A material (or Lagrangian) description of events is one where the 

1x

2x

1X

2X

configuration at 
0t  
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0t  

X x
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material coordinates are the independent variables.  A spatial (or Eulerian) description of 
events is one where the spatial coordinates are used. 
 
Example (Temperature of a Body) 
 
Suppose the temperature   of a body is, in material coordinates, 
 

313),( XXt X             (2.1.6) 

 
but, in the spatial description, 
 

3
1 1),( x
t

x
t x .           (2.1.7) 

 
According to the material description 2.1.6, the temperature is different for different 
particles, but the temperature of each particle remains constant over time.  The spatial 
description 2.1.7 describes the time-dependent temperature at a specific location in space, 
x, Fig. 2.1.6.  Different material particles are flowing through this location over time. 
 

 
 

Figure 2.1.6: particles flowing through space 
 

■  
 
In the material description, then, attention is focused on specific material.  The piece of 
matter under consideration may change shape, density, velocity, and so on, but it is 
always the same piece of material.  On the other hand, in the spatial description, attention 
is focused on a fixed location in space.  Material may pass through this location during 
the motion, so different material is under consideration at different times. 
 
The spatial description is the one most often used in Fluid Mechanics since there is no 
natural reference configuration of the material as it is continuously moving.  However, 
both the material and spatial descriptions are used in Solid Mechanics, where the 
reference configuration is usually the stress-free configuration. 
 
 
2.1.3 Small Perturbations 
 
A large number of important problems involve materials which deform only by a 
relatively small amount.  An example would be the steel structural columns in a building 
under modest loading.  In this type of problem there is virtually no distinction to be made 

x motion of individual  
material particles 
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between the two viewpoints taken above and the analysis is simplified greatly (see later, 
on Small Strain Theory, §2.7). 
 
 
2.1.4 Problems 
 
1. The density of a material is given by 213 XX   and the motion is given by the 

equations txXtxXxX  332211 ,, . 

(a) what kind of description is this for the density, and what kind of description is 
this for the motion? 

(b) re-write the density in terms of x – what is the name given to this description of 
the density? 

(c) is the density of any given material particle changing with time? 
(d) invert the motion equations so that X is the independent variable – what is the 

name given to this description of the motion? 
(e) draw the line element joining the origin to )0,1,1(  and sketch the position of this 

element of material at times 1t  and 2t . 
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2.2 Deformation and Strain 
 
A number of useful ways of describing and quantifying the deformation of a material are 
discussed in this section.   
 
Attention is restricted to the reference and current configurations.  No consideration is 
given to the particular sequence by which the current configuration is reached from the 
reference configuration and so the deformation can be considered to be independent of 
time.  In what follows, particles in the reference configuration will often be termed 
“undeformed” and those in the current configuration “deformed”.  
 
In a change from Chapter 1, lower case letters will now be reserved for both vector- and 
tensor- functions of the spatial coordinates x, whereas upper-case letters will be reserved 
for functions of material coordinates X.  There will be exceptions to this, but it should be 
clear from the context what is implied. 
 
 
2.2.1 The Deformation Gradient 
 
The deformation gradient F is the fundamental measure of deformation in continuum 
mechanics.  It is the second order tensor which maps line elements in the reference 
configuration into line elements (consisting of the same material particles) in the current 
configuration. 
 
Consider a line element Xd  emanating from position X in the reference configuration 
which becomes xd  in the current configuration, Fig. 2.2.1.  Then, using 2.1.3, 
 

   
  Xχ

XχXXχx

d

dd

Grad


                 (2.2.1) 

 
A capital G is used on “Grad” to emphasise that this is a gradient with respect to the 
material coordinates1, the material gradient, Xχ  / . 
 

 
 

Figure 2.2.1: the Deformation Gradient acting on a line element 
 
 

                                                 
1 one can have material gradients and spatial gradients of material or spatial fields – see later 

X x

F

Xd
xd
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The motion vector-function χ  in 2.1.3, 2.2.1, is a function of the variable X, but it is 

customary to denote this simply by x, the value of χ  at X, i.e.  t,Xxx  , so that 
 

J

i
iJ X

x
F








 ,Grad x
X

x
F      Deformation Gradient          (2.2.2) 

 
with 
 

JiJi dXFdxdd  ,XFx      action of F                             (2.2.3) 

 
Lower case indices are used in the index notation to denote quantities associated with the 
spatial basis  ie  whereas upper case indices are used for quantities associated with the 

material basis  IE . 
 
Note that  
 

X
X

x
x dd




  

 
is a differential quantity and this expression has some error associated with it; the error 
(due to terms of order 2)( Xd  and higher, neglected from a Taylor series) tends to zero as 
the differential 0Xd .  The deformation gradient (whose components are finite) thus 
characterises the deformation in the neighbourhood of a point X, mapping infinitesimal 
line elements Xd  emanating from X in the reference configuration to the infinitesimal 
line elements xd  emanating from x in the current configuration, Fig. 2.2.2. 
 

 
 

Figure 2.2.2: deformation of a material particle 
 
Example 
 
Consider the cube of material with sides of unit length illustrated by dotted lines in Fig. 
2.2.3.  It is deformed into the rectangular prism illustrated (this could be achieved, for 
example, by a continuous rotation and stretching motion).  The material and spatial 
coordinate axes are coincident.  The material description of the deformation is 

 

2 1 1 2 3 3

1 1
( ) 6

2 3
X X X    x χ X e e e  

 
and the spatial description is 

before after 
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1

2 1 1 2 3 3

1
( ) 2 3

6
x x x   X χ x E E E  

 
 

 
 

Figure 2.2.3: a deforming cube 
 
Then 
 















 






3/100

002/1

060

J

i

X

x
F  

 
Once F is known, the position of any element can be determined.  For example, taking a 
line element T]0,0,[dad X , T]0,2/,0[ dadd  XFx . 

■  
 
Homogeneous Deformations 
 
A homogeneous deformation is one where the deformation gradient is uniform, i.e. 
independent of the coordinates, and the associated motion is termed affine.  Every part of 
the material deforms as the whole does, and straight parallel lines in the reference 
configuration map to straight parallel lines in the current configuration, as in the above 
example.  Most examples to be considered in what follows will be of homogeneous 
deformations; this keeps the algebra to a minimum, but homogeneous deformation 
analysis is very useful in itself since most of the basic experimental testing of materials, 
e.g. the uniaxial tensile test, involve homogeneous deformations. 
 
Rigid Body Rotations and Translations 
 
One can add a constant vector c to the motion, cxx  , without changing the 
deformation,    xcx GradGrad  .  Thus the deformation gradient does not take into 
account rigid-body translations of bodies in space.  If a body only translates as a rigid 
body in space, then IF  , and cXx   (again, note that F does not tell us where in 
space a particle is, only how it has deformed locally).  If there is no motion, then not only 
is IF  , but Xx  . 

11, xX

22 , xX

33 , xX

D

A
B

C

E

E 

D
B
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If the body rotates as a rigid body (with no translation), then RF  , a rotation tensor 
(§1.10.8).  For example, for a rotation of   about the 2X  axis,  

 
sin 0 cos

0 1 0

cos 0 sin

 

 

 
   

  

F  

 
Note that different particles of the same material body can be translating only, rotating 
only, deforming only, or any combination of these. 
 
The Inverse of the Deformation Gradient 
 
The inverse deformation gradient 1F  carries the spatial line element dx to the material 
line element dX.  It is defined as 
 

j

I
jI x

X
F








  11 ,grad X
x

X
F      Inverse Deformation Gradient       (2.2.4) 

 
so that 

 

jIjI dxFdXdd 11 ,   xFX      action of 1F                        (2.2.5) 

 
with (see Eqn. 1.15.2) 
 

IFFFF   11           ijjMiM FF 1                                      (2.2.6) 

 
Cartesian Base Vectors 
 
Explicitly, in terms of the material and spatial base vectors (see 1.14.3), 
 

jI
j

I
j

j

Ji
J

i
J

J

x

X

x

X

x

X

eEe
X

F

EeE
x

F





















1

     (2.2.7) 

 
so that, for example,       xeEEeXF ddXXxdXXxd iJJiMMJiJi  // . 

 
Because F and 1F  act on vectors in one configuration to produce vectors in the other 
configuration, they are termed two-point tensors.  They are defined in both 
configurations.  This is highlighted by their having both reference and current base 
vectors E and e in their Cartesian representation 2.2.7. 
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Here follow some important relations which relate scalar-, vector- and second-order 
tensor-valued functions in the material and spatial descriptions, the first two relating the 
material and spatial gradients {▲Problem 1}. 
 

T

1

1

:Graddiv

Gradgrad

Gradgrad













FAa

FVv

F

               (2.2.8) 

 
Here,   is a scalar; V and v are the same vector, the former being a function of the 
material coordinates, the material description, the latter a function of the spatial 
coordinates, the spatial description.  Similarly, A is a second order tensor in the material 
form and a is the equivalent spatial form. 
 
The first two of 2.2.8 relate the material gradient to the spatial gradient: the gradient of a 
function is a measure of how the function changes as one moves through space; since the 
material coordinates and the spatial coordinates differ, the change in a function with 
respect to a unit change in the material coordinates will differ from the change in the same 
function with respect to a unit change in the spatial coordinates (see also §2.2.7 below).  
 
 
Example 
 
Consider the deformation 
 

     
      321221321

332122132

25

32

EEEX

eeex

xxxxxx

XXXXXX




 

 
so that 
 






































 

021

010

151

,

131

010

120
1FF  

 
Consider the vector       33123

2
2121 32)( eeexv xxxxxx   which, in the 

material description, is 
 

      3212
2
2321132 53325)( EEEXV XXXXXXXX   

 
The material and spatial gradients are 
 








































101

160

012

grad,

051

1631

250

Grad 22 xX vV  

 
and it can be seen that 
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vFV grad

101

160

012

101

160

012

Grad 22
1 


































 
 xX  

 
■  

 
 
2.2.2 The Cauchy-Green Strain Tensors 
 
The deformation gradient describes how a line element in the reference configuration 
maps into a line element in the current configuration.  It has been seen that the 
deformation gradient gives information about deformation (change of shape) and rigid 
body rotation, but does not encompass information about possible rigid body translations.  
The deformation and rigid rotation will be separated shortly (see §2.2.5).  To this end, 
consider the following strain tensors; these tensors give direct information about the 
deformation of the body.  Specifically, the Left Cauchy-Green Strain and Right 
Cauchy-Green Strain tensors give a measure of how the lengths of line elements and 
angles between line elements (through the vector dot product) change between 
configurations. 
 
The Right Cauchy-Green Strain 
 
Consider two line elements in the reference configuration )2()1( , XX dd  which are mapped 

into the line elements )2()1( , xx dd  in the current configuration.  Then, using 1.10.3d, 
 

   
 

)2()1(

)2(T)1(

)2()1()2()1(

XCX
XFFX
XFXFxx

dd
dd
dddd





     action of C                     (2.2.9) 

 
where, by definition, C is the right Cauchy-Green Strain2 
 

J

k

I

k
JkIkIJ X

x

X

x
FFC







 ,TFFC      Right Cauchy-Green Strain     (2.2.10) 

 
It is a symmetric, positive definite (which will be clear from Eqn. 2.2.17 below), tensor, 
which implies that it has real positive eigenvalues (cf. §1.11.2), and this has important 
consequences (see later).  Explicitly in terms of the base vectors, 
 

k m k k
I k m J I J

I J I J

x x x x

X X X X

     
           

C E e e E E E .    (2.2.11) 

 
Just as the line element Xd  is a vector defined in and associated with the reference 
configuration, C is defined in and associated with the reference configuration, acting on 
vectors in the reference configuration, and so is called a material tensor. 
                                                 
2 “right” because F is on the right of the formula 
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The inverse of C, C-1, is called the Piola deformation tensor. 
 
The Left Cauchy-Green Strain 
 
Consider now the following, using Eqn. 1.10.18c: 

 

   
 

)2(1)1(

)2(1T)1(

)2(1)1(1)2()1(

xbx

xFFx

xFxFXX

dd

dd

dddd













     action of 1b              (2.2.12) 

 
where, by definition, b is the left Cauchy-Green Strain, also known as the Finger tensor: 
 

K

j

K

i
KjKiij X

x

X

x
FFb








 ,TFFb      Left Cauchy-Green Strain       (2.2.13) 

 
Again, this is a symmetric, positive definite tensor, only here, b is defined in the current 
configuration and so is called a spatial tensor. 
 
The inverse of b, b-1, is called the Cauchy deformation tensor. 
 
It can be seen that the right and left Cauchy-Green tensors are related through 
 

-1-1 , FCFbbFFC      (2.2.14) 
 
Note that tensors can be material (e.g. C), two-point (e.g. F) or spatial (e.g. b).  Whatever 
type they are, they can always be described using material or spatial coordinates through 
the motion mapping 2.1.3, that is, using the material or spatial descriptions.  Thus one 
distinguishes between, for example, a spatial tensor, which is an intrinsic property of a 
tensor, and the spatial description of a tensor. 
 
The Principal Scalar Invariants of the Cauchy-Green Tensors 
 
Using 1.10.10b, 
 

    bFFFFC trtrtrtr TT      (2.2.15) 
 
This holds also for arbitrary powers of these tensors, nn bC trtr  , and therefore, from 
Eqn. 1.11.17, the invariants of C and b are equal. 
 
 
2.2.3 The Stretch 
 
The stretch (or the stretch ratio)   is defined as the ratio of the length of a deformed 
line element to the length of the corresponding undeformed line element: 
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X

x

d

d
  The Stretch    (2.2.16) 

 
From the relations involving the Cauchy-Green Strains, letting XXX ddd  )2()1( , 

xxx ddd  )2()1( , and dividing across by the square of the length of Xd  or xd , 
 

xbx
x

X
XCX

X

x
ˆˆ,ˆˆ 1

2

2

2

2 dd
d

d
dd

d

d  




















                      (2.2.17) 

 

Here, the quantities XXX ddd /ˆ   and xxx ddd /ˆ   are unit vectors in the directions of 

Xd  and xd .  Thus, through these relations, C and b determine how much a line element 
stretches (and, from 2.2.17, C and b can be seen to be indeed positive definite). 
 
One says that a line element is extended, unstretched or compressed according to 1 , 

1  or 1 . 
 
Stretching along the Coordinate Axes 
 
Consider three line elements lying along the three coordinate axes3.  Suppose that the 
material deforms in a special way, such that these line elements undergo a pure stretch, 
that is, they change length with no change in the right angles between them.  If the 
stretches in these directions are 1 , 2  and 3 , then  

 

333222111 ,, XxXxXx           (2.2.18) 

 
and the deformation gradient has only diagonal elements in its matrix form: 
 

JiiJiF 





















 ,

00

00

00

3

2

1

F    (no sum)   (2.2.19) 

 
Whereas material undergoes pure stretch along the coordinate directions, line elements 
off-axes will in general stretch/contract and rotate relative to each other.  For example, a 

line element T]0,,[ Xd  stretches by  2 2
1 2

ˆ ˆ / 2d d    XC X  with 

T
21 ]0,,[ xd , and rotates if 21   . 

 
It will be shown below that, for any deformation, there are always three mutually 
orthogonal directions along which material undergoes a pure stretch.  These directions, 
the coordinate axes in this example, are called the principal axes of the material and the 
associated stretches are called the principal stretches.   
 
 
 
                                                 
3 with the material and spatial basis vectors coincident 
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The Case of F Real and Symmetric 
 
Consider now another special deformation, where F is a real symmetric tensor, in which 
case the eigenvalues are real and the eigenvectors form an orthonormal basis (cf. 
§1.11.2)4.  In any given coordinate system, F will in general result in the stretching of line 
elements and the changing of the angles between line elements.  However, if one chooses 
a coordinate set to be the eigenvectors of F, then from Eqn. 1.11.11-12 one can write5 
 

 















 


3

2

13

1 00

00

00

,ˆˆ





 FNnF

i
iii     (2.2.20) 

 
where 321 ,,   are the eigenvalues of F.  The eigenvalues are the principal stretches and 

the eigenvectors are the principal axes.  This indicates that as long as F is real and 
symmetric, one can always find a coordinate system along whose axes the material 
undergoes a pure stretch, with no rotation.  This topic will be discussed more fully in 
§2.2.5 below. 
 
 
2.2.4 The Green-Lagrange and Euler-Almansi Strain Tensors 
 
Whereas the left and right Cauchy-Green tensors give information about the change in 
angle between line elements and the stretch of line elements, the Green-Lagrange strain 
and the Euler-Almansi strain tensors directly give information about the change in the 
squared length of elements. 
 
Specifically, when the Green-Lagrange strain E operates on a line element dX, it gives 
(half) the change in the squares of the undeformed and deformed lengths: 
 

 

  

XXE

XICX

XXXXC
Xx

dd

dd

dddd
dd








2

1
2

1

2

22

      action of E         (2.2.21) 

 
where 
 

     JIJIJI CE 
2

1
,

2

1

2

1 T IFFICE      Green-Lagrange Strain      (2.2.22) 

 
It is a symmetric positive definite material tensor.  Similarly, the (symmetric spatial) 
Euler-Almansi strain tensor is defined through 

                                                 
4 in fact, F in this case will have to be positive definite, with det 0F  (see later in §2.2.8) 
5 

i
n̂  are the eigenvectors for the basis 

i
e , 

I
N̂  for the basis 

i
Ê , with 

i
n̂ , 

I
N̂  coincident; when the bases are 

not coincident, the notion of rotating line elements becomes ambiguous – this topic will be examined later 
in the context of objectivity 
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xex
Xx

dd
dd




2

22

     action of e                          (2.2.23) 

 
and 
 

   1T1

2

1

2

1   FFIbIe      Euler-Almansi Strain           (2.2.24) 

 
Physical Meaning of the Components of E 
 

Take a line element in the 1-direction,  T1)1( 0,0,dXd X , so that  T)1( 0,0,1ˆ Xd .  The 

square of the stretch of this element is 
 

   1
2

1
1

2

1ˆˆ 2
)1(111111)1()1(

2
)1(   CECdd XCX  

 
The unit extension is   1/  XXx ddd .  Denoting the unit extension of )1(Xd  by 

)1(E , one has 

 
2

)1()1(11 2

1
EE E      (2.2.25) 

 
and similarly for the other diagonal elements 3322 , EE . 

 
When the deformation is small, 2

)1(E  is small in comparison to )1(E , so that 11 (1)E  E .  For 

small deformations then, the diagonal terms are equivalent to the unit extensions. 
 
Let 12  denote the angle between the deformed elements which were initially parallel to 

the 1X  and 2X  axes.  Then 
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XX
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x

 (2.2.26) 

 
and similarly for the other off-diagonal elements.  Note that if 2/12   , so that there is 

no angle change, then 012 E .  Again, if the deformation is small, then 2211 , EE  are 
small, and  
 

12121212 2cos
2

sin
2

E





  

              (2.2.27) 
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In words: for small deformations, the component 12E  gives half the change in the original 
right angle. 
 
 
2.2.5 Stretch and Rotation Tensors 
 
The deformation gradient can always be decomposed into the product of two tensors, a 
stretch tensor and a rotation tensor (in one of two different ways, material or spatial 
versions).  This is known as the polar decomposition, and is discussed in §1.11.7.  One 
has 
 

RUF   Polar Decomposition  (Material)             (2.2.28) 
 
Here, R is a proper orthogonal tensor, i.e. IRR T  with 1det R , called the rotation 
tensor.  It is a measure of the local rotation at X. 
 
The decomposition is not unique; it is made unique by choosing U to be a symmetric 
tensor, called the right stretch tensor.  It is a measure of the local stretching (or 
contraction) of material at X.  Consider a line element dX.  Then  
 

XRUXFx ˆˆˆ ddd       (2.2.29) 
 
and so {▲Problem 2} 
 

XUUX ˆˆ2 dd       (2.2.30) 
 
Thus (this is a definition of U) 
 

 UUCCU   The Right Stretch Tensor     (2.2.31) 
 
From 2.2.30, the right Cauchy-Green strain C (and by consequence the Euler-Lagrange 
strain E) only give information about the stretch of line elements; it does not give 
information about the rotation that is experienced by a particle during motion.  The 
deformation gradient F, however, contains information about both the stretch and rotation.  
It can also be seen from 2.2.30-1 that U is a material tensor. 
 
Note that, since 
 

 XURx dd  , 
 
the undeformed line element is first stretched by U and is then rotated by R into the 
deformed element xd  (the element may also undergo a rigid body translation c), Fig. 
2.2.4.  R is a two-point tensor. 
 



Section 2.2 

Solid Mechanics Part III                                                                                Kelly 218

 
 

Figure 2.2.4: the polar decomposition 
 
Evaluation of U 
 

In order to evaluate U, it is necessary to evaluate C .  To evaluate the square-root, C 
must first be obtained in relation to its principal axes, so that it is diagonal, and then the 
square root can be taken of the diagonal elements, since its eigenvalues will be positive  
(see §1.11.6).  Then the tensor needs to be transformed back to the original coordinate 
system. 
 
Example 
 
Consider the motion 
 

33212211 ,,22 XxXXxXXx   

 
The (homogeneous) deformation of a unit square in the 21 xx   plane is as shown in Fig. 
2.2.5. 
 

 
 

Figure 2.2.5: deformation of a square 
 
One has 
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Note that F is not symmetric, so that it might have only one real eigenvalue (in fact here it 
does have complex eigenvalues), and the eigenvectors may not be orthonormal.  C, on the 
other hand, by its very definition, is symmetric; it is in fact positive definite and so has 
positive real eigenvalues forming an orthonormal set. 
 
To determine the principal axes of C, it is necessary to evaluate the 
eigenvalues/eigenvectors of the tensor.  The eigenvalues are the roots of the characteristic 
equation 1.11.5, 
 

0IIIIII 23  CCC   

 
and the first, second and third invariants of the tensor are given by 1.11.6 so that 

0162611 23   , with roots 1,2,8 .  The three corresponding eigenvectors 
are found from 1.11.8, 
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0ˆ)5(ˆ3
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N
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








 

 
Thus (normalizing the eigenvectors so that they are unit vectors, and form a right-handed 
set, Fig. 2.2.6): 
 

(i)  for 8 , 0ˆ7,0ˆ3ˆ3,0ˆ3ˆ3 32121  NNNNN ,  22
1

12
1

1
ˆ EEN   

(ii)  for 2 , 0ˆ,0ˆ3ˆ3,0ˆ3ˆ3 32121  NNNNN ,  22
1

12
1

2
ˆ EEN   

(iii) for 1 , 0ˆ0,0ˆ4ˆ3,0ˆ3ˆ4 32121  NNNNN ,  33
ˆ EN    

 

 
 

Figure 2.2.6: deformation of a square 
 
Thus the right Cauchy-Green strain tensor C, with respect to coordinates with base 

vectors 11 N̂E  , 22 N̂E   and 33 N̂E  , that is, in terms of principal coordinates, is 
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This result can be checked using the tensor transformation formulae 1.13.6, 
      QCQC T , where Q is the transformation matrix of direction cosines (see also the 
example at the end of §1.5.2), 
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The stretch tensor U, with respect to the principal directions is 
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These eigenvalues of U (which are the square root of those of C) are the principal 
stretches and, as before, they are labeled 321 ,,  . 

 
In the original coordinate system, using the inverse tensor transformation rule 1.13.6, 
     TQUQU  , 
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so that 
 

    ji EeFUR 














 
  :basis

100
02/12/1
02/12/1

1  

 
and it can be verified that R is a rotation tensor, i.e. is proper orthogonal. 
 
Returning to the deformation of the unit square, the stretch and rotation are as illustrated 
in Fig. 2.2.7 – the action of U is indicated by the arrows, deforming the unit square to the 
dotted parallelogram, whereas R rotates the parallelogram through o45  as a rigid body to 
its final position. 
 
Note that the line elements along the diagonals (indicated by the heavy lines) lie along the 
principal directions of U and therefore undergo a pure stretch; the diagonal in the 1N̂  
direction has stretched but has also moved with a rigid translation. 
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Figure 2.2.7: stretch and rotation of a square 
■  

 
Spatial Description 
 
A polar decomposition can be made in the spatial description.  In that case, 
 

vRF    Polar Decomposition  (Spatial)            (2.2.32) 
 
Here v is a symmetric, positive definite second order tensor called the left stretch tensor, 
and bvv  , where b is the left Cauchy-Green tensor.  R is the same rotation tensor as 
appears in the material description.  Thus an elemental sphere can be regarded as first 
stretching into an ellipsoid, whose axes are the principal material axes (the principal axes 
of U), and then rotating; or first rotating, and then stretching into an ellipsoid whose axes 
are the principal spatial axes (the principal axes of v).  The end result is the same. 
 
The development in the spatial description is similar to that given above for the material 
description, and one finds by analogy with 2.2.30, 
 

xvvx ˆˆ 112 dd                                                       (2.2.33) 
 
In the above example, it turns out that v takes the simple diagonal form 
 

  ji eev 

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
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0022

. 

 
so the unit square rotates first and then undergoes a pure stretch along the coordinate axes, 
which are the principal spatial axes, and the sequence is now as shown in Fig. 2.2.9. 
 

11, xX

22 , xX
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Figure 2.2.8: stretch and rotation of a square in spatial description 
 
 
Relationship between the Material and Spatial Decompositions 
 
Comparing the two decompositions, one sees that the material and spatial tensors 
involved are related through 
 

TRURv  ,    TRCRb        (2.2.34) 
 

Further, suppose that U has an eigenvalue   and an eigenvector N̂ .  Then NNU ˆˆ  , so 

that RNRUN  .  But vRRU  , so    NRNRv ˆˆ  .  Thus v also has an eigenvalue 

 , but an eigenvector NRn ˆˆ  .  From this, it is seen that the rotation tensor R maps the 
principal material axes into the principal spatial axes.  It also follows that R and F can be 
written explicitly in terms of the material and spatial principal axes (compare the first of 
these with 1.10.25)6: 
 

ii NnR ˆˆ  ,          



3

1

3

1

ˆˆˆˆ
i

iii
i

iii NnNNRRUF                 (2.2.35) 

 
and the deformation gradient acts on the principal axes base vectors according to 
{▲Problem 4} 
 

iiii
i

ii
i

iiii NnFNnFnNFnNF ˆˆ,ˆ1
ˆ,ˆ

1ˆ,ˆˆ T1T 


               (2.2.36) 

 
The representation of F and R in terms of both material and spatial principal base vectors 
in 2.3.35 highlights their two-point character. 
 
Other Strain Measures 
 
Some other useful measures of strain are 

 
The Hencky strain measure: UH ln  (material)   or    vh ln (spatial) 
 

                                                 
6 this is not a spectral decomposition of F (unless F happens to be symmetric, which it must be in order to 
have a spectral decomposition) 

11, xX

22 , xX
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The Biot strain measure: IUB   (material) or  Ivb    (spatial) 
 
The Hencky strain is evaluated by first evaluating U along the principal axes, so that the 
logarithm can be taken of the diagonal elements. 
 
The material tensors H, B , C, U and E are coaxial tensors, with the same eigenvectors 

iN̂ .  Similarly, the spatial tensors h, b , b, v and e are coaxial with the same eigenvectors 

in̂ .  From the definitions, the spectral decompositions of these tensors are 
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                   (2.2.37) 

 
Deformation of a Circular Material Element 
 
A circular material element will deform into an ellipse, as indicated in Figs. 2.2.2 and 
2.2.4.  This can be shown as follows.  With respect to the principal axes, an undeformed 

line element 1 1 2 2d dX dX X N N  has magnitude squared    2 2 2
1 2dX dX c  , where c 

is the radius of the circle, Fig. 2.2.9.  The deformed element is d dx U X , or 

1 1 1 2 2 2 1 1 2 2d dX dX dx dx    x N N n n .  Thus 1 1 1 2 2 2/ , /dx dX dx dX   , which 

leads to the standard equation of an ellipse with major and minor axes 1 2,c c  : 

   2 2

1 1 2 2/ / 1dx c dx c   . 

 

 
 

Figure 2.2.9: a circular element deforming into an ellipse 
 
 
 
 

undeformed 

1 1,X x

2 2,X x dX

dx
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2.2.6 Some Simple Deformations 
 
In this section, some elementary deformations are considered. 
 
Pure Stretch 
 
This deformation has already been seen, but now it can be viewed as a special case of the 
polar decomposition.  The motion is 
 

333222111 ,, XxXxXx         Pure Stretch            (2.2.38) 

 
and the deformation gradient is 
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Here, IR   and there is no rotation.  FU   and the principal material axes are 
coincident with the material coordinate axes.  321 ,,  , the eigenvalues of U, are the 

principal stretches. 
 
Stretch with rotation 
 
Consider the motion 
 

33212211 ,, XxXkXxkXXx   

 
so that 
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where tank .  This decomposition shows that the deformation consists of material 

stretching by )1(sec 2k , the principal stretches, along each of the axes, followed 

by a rigid body rotation through an angle   about the 03 X  axis, Fig. 2.2.10.  The 

deformation is relatively simple because the principal material axes are aligned with the 
material coordinate axes (so that U is diagonal).  The deformation of the unit square is as 
shown in Fig. 2.2.10. 
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Figure 2.2.10: stretch with rotation 
 
Pure Shear 
 
Consider the motion 
 

33212211 ,, XxXkXxkXXx       Pure Shear           (2.2.39) 

 
so that 
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where, since F is symmetric, there is no rotation, and UF  .  Since the rotation is zero, 
one can work directly with U and not have to consider C.  The eigenvalues of U, the 
principal stretches, are 1,1,1 kk  , with corresponding principal directions 

22
1

12
1

1
ˆ EEN  , 22

1
12

1
2

ˆ EEN   and 33
ˆ EN  .  

 
The deformation of the unit square is as shown in Fig. 2.2.11.  The diagonal indicated by 
the heavy line stretches by an amount k1  whereas the other diagonal contracts by an 
amount k1 .  An element of material along the diagonal will undergo a pure stretch as 
indicated by the stretching of the dotted box. 
 

 
 

Figure 2.2.11: pure shear 
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Simple Shear 
 
Consider the motion 
 

3322211 ,, XxXxkXXx       Simple Shear            (2.2.40) 

 
so that 
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The invariants of C are 1III,3II,3I 22  CCC kk  and the characteristic equation 

is 01)1()3( 23   k , so the principal values of C are 

1,41 2
2
12

2
1 kkk  .  The principal values of U are the (positive) square-roots of 

these: 1,4 2
12

2
1 kk  .  These can be written as 1,tansec    by letting 

k2
1tan  .  The corresponding eigenvectors of C are 
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or, normalizing so that they are of unit size, and writing in terms of  , 
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The transformation matrix of direction cosines is then 
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so that, using the inverse transformation formula,      TQUQU  , one obtains U in 
terms of the original coordinates, and hence 
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The deformation of the unit square is shown in Fig. 2.2.12 (for o0.2, 5.71k   ).  The 

square first undergoes a pure stretch/contraction ( 1N̂  is in this case at o47.86  to the 1X  
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axis, with the diagonal of the square becoming the diagonal of the parallelogram, at o45.5  
to the 1X  axis), and is then brought to its final position by a negative (clockwise) rotation 

of  . 
 
For this deformation, 1det F  and, as will be shown below, this means that the simple 
shear deformation is volume-preserving. 
 

 
 

Figure 2.2.12: simple shear 
 
 
2.2.7 Displacement & Displacement Gradients 
 
The displacement of a material particle7 is the movement it undergoes in the transition 
from the reference configuration to the current configuration.  Thus, Fig. 2.2.13,8 
 

XXxXU  ),(),( tt      Displacement (Material Description)              (2.2.41) 
 

),(),( tt xXxxu       Displacement (Spatial Description)                  (2.2.42) 
 
Note that U and u have the same values, they just have different arguments. 
 

 
 

Figure 2.2.13: the displacement 

                                                 
7 In solid mechanics, the motion and deformation are often described in terms of the displacement u.  In 
fluid mechanics, however, the primary field quantity describing the kinematic properties is the velocity v 
(and the acceleration va  ) – see later.   
8 The material displacement U here is not to be confused with the right stretch tensor discussed earlier. 

X x

uU 
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Displacement Gradients 
 
The displacement gradient in the material and spatial descriptions, XXU  /),( t  and 

xxu  /),( t , are related to the deformation gradient and the inverse deformation gradient 
through 
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                 (2.2.43) 

 
and it is clear that the displacement gradients are related through (see Eqn. 2.2.8) 
 

1Gradgrad  FUu                                (2.2.44) 
 
The deformation can now be written in terms of either the material or spatial displacement 
gradients: 
 

xuXxuXx

XUXXUXx

ddddd

ddddd

grad)(

Grad)(




            (2.2.45) 

 
Example 
 
Consider again the extension of the bar shown in Fig. 2.1.5.  The displacement is 
 

  1
1 1 1

3
( ) 3 , ( )

1 3

t x t
t X t

t

      
U X E u x e  

 
and the displacement gradients are 
 

1 1

3
Grad 3 , grad

1 3

t
t

t
     

U E u e  

 
The displacement is plotted in Fig. 2.2.14 for 1t  .  The two gradients  1 1/U X   and 

1 1/u x   have different values (see the horizontal axes on Fig. 2.2.14). In this example, 

1 1 1 1/ /U X u x      – the change in displacement is not as large when “seen” from the 

spatial coordinates. 
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Figure 2.1.14: displacement and displacement gradient 
 

■  
 
Strains in terms of Displacement Gradients 
 
The strains can be written in terms of the displacement gradients.  Using 1.10.3b, 
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(2.2.46a) 
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(2.2.46b) 
 
Small Strain 
 
If the displacement gradients are small, then the quadratic terms, their products, are small 
relative to the gradients themselves, and may be neglected.  With this assumption, the 
Green-Lagrange strain E (and the Euler-Almansi strain) reduces to the small-strain 
tensor, 
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Since in this case the displacement gradients are small, it does not matter whether one 
refers the strains to the reference or current configurations – the error is of the same order 
as the quadratic terms already neglected9, so the small strain tensor can equally well be 
written as 
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1 T uuε  Small Strain Tensor     (2.2.48) 

 
 
2.2.8 The Deformation of Area and Volume Elements 
 
Line elements transform between the reference and current configurations through the 
deformation gradient.  Here, the transformation of area and volume elements is examined. 
 
The Jacobian Determinant 
 
The Jacobian determinant of the deformation is defined as the determinant of the 
deformation gradient, 
 

FX det),( tJ       

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

det

X

x

X

x

X

x
X

x

X

x

X

x
X

x

X

x

X

x




























F      The Jacobian Determinant    (2.2.49) 

 
Equivalently, it can be considered to be the Jacobian of the transformation from material 
to spatial coordinates (see Appendix 1.B.2). 
 
From Eqn. 1.3.17, the Jacobian can also be written in the form of the triple scalar product 
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321 XXX

J
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          (2.2.50) 

 
Consider now a volume element in the reference configuration, a parallelepiped bounded 
by the three line-elements )1(Xd , )2(Xd  and )3(Xd .  The volume of the parallelepiped10 is 
given by the triple scalar product (Eqns. 1.1.4): 
 

 )3()2()1( XXX ddddV           (2.2.51) 
 
After deformation, the volume element is bounded by the three vectors )(idx , so that the 
volume of the deformed element is, using 1.10.16f, 
 

                                                 
9 although large rigid body rotations must not be allowed – see §2.7 . 
10 the vectors should form a right-handed set so that the volume is positive. 
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        (2.2.52) 

 
Thus the scalar J is a measure of how the volume of a material element has changed with 
the deformation and for this reason is often called the volume ratio. 
 

dVJdv   Volume Ratio       (2.2.53) 
 
Since volumes cannot be negative, one must insist on physical grounds that 0J .  Also, 
since F has an inverse, 0J .  Thus one has the restriction 
 

0J        (2.2.54) 
 
Note that a rigid body rotation does not alter the volume, so the volume change is 
completely characterised by the stretching tensor U.  Three line elements lying along the 
principal directions of U form an element with volume dV , and then undergo pure stretch 
into new line elements defining an element of volume dVdv 321  , where i  are the 

principal stretches, Fig. 2.2.15.  The unit change in volume is therefore also 
 

1321 
 
dV

dVdv
     (2.2.55) 

 

 
 

Figure 2.2.15: change in volume 
 
For example, the volume change for pure shear is 2k  (volume decreasing) and, for 
simple shear, is zero (cf. Eqn. 2.2.40 et seq., 01)1)(tan)(sectan(sec   ). 
 
An incompressible material is one for which the volume change is zero, i.e. the 
deformation is isochoric.  For such a material, 1J , and the three principal stretches are 
not independent, but are constrained by 
 

1321   Incompressibility Constraint                   (2.2.56) 

 

current 
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reference 
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principal material 
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Nanson’s Formula 
 

Consider an area element in the reference configuration, with area dS , unit normal N̂ , 
and bounded by the vectors )2()1( , XX dd , Fig. 2.2.16.  Then 
 

)2()1(ˆ XXN dddS         (2.2.57) 
 
The volume of the element bounded by the vectors )2()1( , XX dd  and some arbitrary line 

element Xd  is XN ddSdV  ˆ .  The area element is now deformed into an element of 
area ds  with normal n̂  and bounded by the line elements )2()1( , xx dd .  The volume of the 
new element bounded by the area element and XFx dd   is then 
 

XNXFnxn ddSJddsddsdv  ˆˆˆ       (2.2.58) 
 

 
 

Figure 2.2.16: change of surface area 
 
Thus, since dX is arbitrary, and using 1.10.3d, 
 

dSJds NFn ˆˆ T  Nanson’s Formula   (2.2.59) 
 
Nanson’s formula shows how the vector element of area dsn̂  in the current 

configuration is related to the vector element of area dSN̂  in the reference configuration. 
 
 
2.2.9 Inextensibility and Orientation Constraints 
 
A constraint on the principal stretches was introduced for an incompressible material, 
2.2.56.  Other constraints arise in practice.  For example, consider a material which is 

inextensible in a certain direction, defined by a unit vector Â  in the reference 

configuration.  It follows that 1ˆ AF  and the constraint can be expressed as 2.2.17,  

 

1ˆˆ ACA      Inextensibility Constraint               (2.2.60) 
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If there are two such directions in a plane, defined by Â  and B̂ , making angles   and   

respectively with the principal material axes 21
ˆ,ˆ NN , then 
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and      22

2
2
1

2
2

22
2

2
1 cos1cos  .  It follows that   ,   , 

   or  2  (or 121   , i.e. no deformation). 
 
Similarly, one can have orientation constraints.  For example, suppose that the direction 

associated with the vector Â  maintains that direction.  Then 
 

AAF ˆˆ       Orientation Constraint                 (2.2.61) 
 
for some scalar 0 . 
 
 
2.2.10 Problems 
 
1. In equations 2.2.8, one has from the chain rule 
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Derive the other two relations. 
2. Take the dot product    ˆ ˆd d x x  in Eqn. 2.2.29.  Then use IRR T , UU T , and 

1.10.3e to show that 

X

X
UU

X

X

d

d

d

d
2  

3. For the deformation 

3213322311 22,2,2 XXXxXXxXXx   

(a) Determine the Deformation Gradient and the Right Cauchy-Green tensors 
(b) Consider the two line elements 2

)2(
1

)1( , eXeX  dd  (emanating from (0,0,0)).  
Use the Right Cauchy Green tensor to determine whether these elements in the 
current configuration ( )2()1( , xx dd ) are perpendicular. 

(c) Use the right Cauchy Green tensor to evaluate the stretch of the line element 

21 eeX d , and hence determine whether the element contracts, stretches, or 
stays the same length after deformation. 

(d) Determine the Green-Lagrange and Eulerian strain tensors 
(e) Decompose the deformation into a stretching and rotation (check that U is 

symmetric and R is orthogonal).  What are the principal stretches? 
4. Derive Equations 2.2.36. 
5. For the deformation 

32332211 ,, XaXxXXxXx   
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(a) Determine the displacement vector in both the material and spatial forms 
(b) Determine the displaced location of the particles in the undeformed state which 

originally comprise 
(i) the plane circular surface )1/(1,0 22

3
2
21 aXXX   

(ii) the infinitesimal cube with edges along the coordinate axes of length 
idX  

Sketch the displaced configurations if 2/1a  
6. For the deformation 

313322211 ,, XaXxaXXxaXXx   

(a) Determine the displacement vector in both the material and spatial forms 
(b) Calculate the full material (Green-Lagrange) strain tensor and the full spatial 

strain tensor 
(c) Calculate the infinitesimal strain tensor as derived from the material and spatial 

tensors, and compare them for the case of very small a. 
7. In the example given above on the polar decomposition, §2.2.5, check that the 

relations 3,2,1,  iii nCn   are satisfied (with respect to the original axes).  Check 

also that the relations 3,2,1,  iii nnC   are satisfied (here, the eigenvectors are the 

unit vectors in the second coordinate system, the principal directions of C, and C is 
with respect to these axes, i.e. it is diagonal). 
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2.3 Deformation and Strain: Further Topics 
 
 
2.3.1 Volumetric and Isochoric Deformations 
 
When analysing materials which are only slightly incompressible, it is useful to 
decompose the deformation gradient multiplicatively, according to 
 

( ) FFIF 3/13/1 JJ ==             (2.3.1) 
 
From this definition {▲Problem 1}, 
 

1det =F             (2.3.2) 
 
and so F  characterises a volume preserving (distortional or isochoric) deformation.  The 
tensor I3/1J  characterises the volume-changing (dilational or volumetric) component of 
the deformation, with ( ) JJ == FI detdet 3/1 . 
 
This concept can be carried on to other kinematic tensors.  For example, with FFC T= ,  
 

CFFC 3/2T3/2 JJ ≡= .    (2.3.3) 
 
F  and C  are called the modified deformation gradient and the modified right 
Cauchy-Green tensor, respectively.  The square of the stretch is given by 
 

{ }XCXXCX ˆˆˆˆ 3/22 ddJdd ==λ     (2.3.4) 
 
so that λλ 3/1J= , where λ  is the modified stretch, due to the action of C .  Similarly, 
the modified principal stretches are 
 

ii J λλ 3/1−= ,     3,2,1=i               (2.3.5) 
 
with 
 

1det 321 == λλλF                                                (2.3.6) 
 
The case of simple shear discussed earlier is an example of an isochoric deformation, in 
which  the deformation gradient and the modified deformation gradient coincide,  

II =3/1J . 
 
 
2.3.2 Relative Deformation 
 
It is usual to use the configuration at )0,( =tX  as the reference configuration, and define 
quantities such as the deformation gradient relative to this reference configuration.  As 
mentioned, any configuration can be taken to be the reference configuration, and a new 
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deformation gradient can be constructed with respect to this new reference configuration.  
Further, the reference configuration does not have to be fixed, but could be moving also. 
 
In many cases, it is useful to choose the current configuration ),( tx  to be the reference 
configuration, for example when evaluating rates of change of kinematic quantities (see 
later).  To this end, introduce a third configuration: this is the configuration at some time 

τ=t  and the position of a material particle X here is denoted by ),(ˆ τXχx = , where χ  is 
the motion function.  The deformation at this time τ  relative to the current configuration 
is called the relative deformation, and is denoted by ),(ˆ )( τxχx t= , as illustrated in Fig. 
2.3.1. 
 

 
 

Figure 2.3.1: the relative deformation 
 
 
The relative deformation gradient tF  is defined through 
 

xxFx dd t ),(ˆ τ= ,       
x
xF
∂
∂

=
ˆ

t           (2.3.7) 

 
Also, since XXFx dtd ),(=  and XXFx dd ),(ˆ τ= , one has the relation 
 

),(),(),( tt XFxFXF ττ =     (2.3.8) 
 
Similarly, relative strain measures can be defined, for example the relative right Cauchy-
Green strain tensor is 
 

( ) ( ) ( )τττ ttt FFC T=      (2.3.9) 
 
Example 
 
Consider the two-dimensional motion 
 

initial 
configuration 

current 
configuration 

configuration 
at τ=t  

t,X

),( tXχ

),( τXχ

),()( τxχ t

),(
),(ˆ

)( τ
τ
xχ

Xχx

t=
=

),(
),(

)( t

t

t xχ
Xχx

=
=

tF

F

relative 
deformation 
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)1(, 2211 +== tXxeXx t  
 
Inverting these gives the spatial description )1/(, 2211 +== − txXexX t , and the relative 
deformation is 
 

)1/()1()1(),(ˆ
),(ˆ

222

111

++=+=
== −

txXx

exeXx t

τττ
τ ττ

x
x

 

 
The deformation gradients are 
 

2211

2211

)1/()1(
ˆ

),(

)1(),(

eeeeeexF

EeEeEeXF

⊗+++⊗=⊗
∂
∂

=

⊗++⊗=⊗
∂
∂

=

− te
x

x

te
X

x
t

t
ji

j

i
t

t
ji

j

i

ττ τ
 

■ 
 
 
2.3.3 Derivatives of the Stretch 
 
In this section, some useful formulae involving the derivatives of the stretches with 
respect to the Cauchy-Green strain tensors are derived. 
  
Derivatives with respect to b 
 
First, take the stretches to be functions of the left Cauchy-Green strain b.  Write b using 
the spatial principal directions in̂  as a basis, 2.2.37, so that the total differential can be 
expressed as 
 

[ ]∑
=

⊗+⊗+⊗=
3

1

2 ˆˆˆˆˆˆ2
i

iiiiiiiii dddd nnnnnnb λλλ              (2.3.10) 

 
Since ijji δ=⋅nn ˆˆ , then 
 

[ ] iiiiiiiiiii ddddd λλλλλ 2ˆˆˆˆ2ˆˆ 2 =⋅+⋅+= nnnnnbn  (no sum over i)          (2.3.11) 
 
This last follows since the change in a vector of constant length is always orthogonal to 
the vector itself (as in the curvature analysis of §1.6.2).  Using the property 

)(: vuTuTv ⊗= , one has (summing over the k but not over the i; here ikik dd δλλ =/ ) 
 

1)ˆˆ(:
2
12)ˆˆ(:)ˆˆ(: =⊗

∂
∂

→=⊗
∂
∂

≡⊗ ii
ii

iiiik
k

ii ddd nnbnnbnnb
λλ

λλλ
λ

    (2.3.12) 

 
Then, since bb ∂∂∂∂ /:/ ii λλ  is also equal to 1, one has 
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)ˆˆ(
2
1:)ˆˆ(:

2
1

ii
i

ii

i
ii

ii

nn
bb

bnnb
⊗=

∂
∂

→
∂
∂

∂
∂

=⊗
∂
∂

λ
λλ

λλλ
                 (2.3.13) 

 
The chain rule then gives the second derivative. 
 
The above analysis is for distinct principal stretches.  When λλλλ ≡== 321 , then 

Ib 2λ= , Ib λλdd 2= .  Also, ( ) λλ dd ∂∂= /3 bb , so ( ) Ib λλ 2/3 =∂∂ , or  
 

b
I

b
b

∂
∂

=
∂
∂

∂
∂ λλλ
λ

:2:3              (2.3.14) 

 
But 1/:/ =∂∂∂∂ bb λλ  and II :3 = , and so in this case, λλ 2// Ib =∂∂ . 
 
A similar calculation can be carried out for two equal eigenvalues 321 λλλλ ≠== .  In 
summary, 
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          (2.3.15) 

 
Derivatives with respect to C 
 
The stretch can also be considered to be a function of the right Cauchy-Green strain C.  
The derivatives of the stretches with respect to C can be found in exactly the same way as 
for the left Cauchy-Green strain.  The results are the same as given in 2.3.15 except that, 
referring to 2.2.37, b is replaced by C and n̂  is replaced by N̂ . 
 
 
2.3.4 The Directional Derivative of Kinematic Quantities 
 
The directional derivative of vectors and tensors was introduced in §1.6.11 and §1.15.4.  
Taking directional derivatives of kinematic quantities is often very useful, for example in 
linearising equations in order to apply numerical solution algorithms 
 
The Deformation Gradient 
 
First, consider the deformation gradient as a function of the current position x (or motion 
χ ) and examine its value at ax + : 
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[ ] ( )aaFxFaxF x o+∂+=+ )()(                                             (2.3.16) 

 
The directional derivative [ ] ( )axFaFx ∂∂=∂ /  can be expressed as 
 

[ ] ( )

( )

( )Fa
a

X
ax

axFaFx

grad
Grad

0

0

=
=

∂
+∂

=

+=∂

=

=

ε
ε

ε
ε

ε

ε

d

d

d

d

                                              (2.3.17) 

 
the last line resulting from 2.2.8b.  It follows that the directional derivative of the 
deformation gradient in the direction of a displacement vector u from the current 
configuration is 
 

 [ ] ( )FuuFx grad=∂                                                     (2.3.18) 
 
On the other hand, consider the deformation gradient as a function of X and examine its 
value at AX + : 
 

[ ]AFXFAXF X∂+=+ )()(                                             (2.3.19) 
 
and now 
 

[ ] ( )

( )

( )

( )
a
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AFx
X

AXx
X

AXFAFX

Grad
Grad
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0

0

=
=

+
∂
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=

+=∂

=

=

=

ε
ε

ε
ε

ε
ε

ε

ε

ε

d

d

d

d

d

d

                                         (2.3.20) 

 
where FAa = . 
 
Other Kinematic Quantities 
 
The directional derivative of the Green-Lagrange strain, the right and left Cauchy-Green 
tensors and the Jacobian in the direction of a displacement u from the current 
configuration are  {▲Problem 2} 
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( ) ( )
uu

ubbuub

εFFuC

εFFuE

x

x

x

x
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gradgrad][

2][

][

T

T

T

JJ =∂
+=∂

=∂

=∂

                                (2.3.21) 

 
where ε  is the small-strain tensor, 2.2.48. 
 
The directional derivative is also useful for deriving various relations between the 
kinematic variables.  For example, for an arbitrary vector a, using the chain rule 1.15.28, 
2.3.20, 1.15.24, the trace relations 1.10.10e and 1.10.10b, and 2.2.8b, 1.14.9,   
 

( ) [ ]
[ ][ ]
( )[ ]
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( )( )

( )( )
( )( )

( )Fa
Fa

FFa
FaF
FaF

Fa
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F
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gradtr
Gradtr
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Grad:

Grad

Grad

1

1
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J
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J

J

J

J

J
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=
=
=

=

=

∂=
∂∂=

∂=⋅

−

−

−

                                            (2.3.22) 

 
so that, from 1.14.16b with a constant, 
 

TdivGrad FJJ =                                             (2.3.23) 
 
 
2.3.5 Problems 
 
1. Use 1.10.16c to show that 1det =F . 
2. (a) use the relation ( )IFFE −= T

2
1 , Eqn. 2.3.18, ( )FuuFx grad][ =∂ , and the product 

rule of differentiation to derive 2.3.21a, εFFuEx
T][ =∂ , where ε  is the small 

strain tensor. 
(b) evaluate [ ]uCx∂  (in terms of F and ε , the small strain tensor) 
(c) evaluate [ ]ubx∂  (in terms of ugrad  and b) 
(d) evaluate [ ]ux J∂  (in terms of J and udiv ; use the chain rule [ ] [ ][ ]uFu xFx ∂∂=∂ JJ ˆ , 

with FF det)(ˆ =J , [ ] uuFx Grad=∂ ) 
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2.4 Material Time Derivatives 
 
The motion is now allowed to be a function of time,  t,Xχx  , and attention is given to 
time derivatives, both the material time derivative and the local time derivative. 
 
 
2.4.1 Velocity & Acceleration 
 
The velocity of a moving particle is the time rate of change of the position of the particle.  
From 2.1.3, by definition,  
 

dt

td
t

),(
),(

Xχ
XV                                                     (2.4.1) 

 
In the motion expression  t,Xχx  , X and t are independent variables and X is 
independent of time, denoting the particle for which the velocity is being calculated.  The 
velocity can thus be written as tt  /),(Xχ  or, denoting the motion by ),( tXx , as 

dttd /),(Xx  or tt  /),(Xx . 
 
The spatial description of the velocity field may be obtained from the material description 
by simply replacing X with x, i.e. 
 

 ttt ),,(),( 1 xχVxv                                                   (2.4.2) 
 
As with displacements in both descriptions, there is only one velocity, ),(),( tt xvXV   –  
they are just given in terms of different coordinates. 
 
The velocity is most often expressed in the spatial description, as 
 

dt

d
t

x
xxv  ),(        velocity                                    (2.4.3) 

 
To be precise, the right hand side here involves x which is a function of the material 
coordinates, but it is understood that the substitution back to spatial coordinates, as in 
2.4.2, is made (see example below). 
 
Similarly, the acceleration is defined to be 
 

2

2

2

2

2

2 ),(),(
),(

t

t

dt

d

dt

d

dt

td
t





XχVxXχ

XA                              (2.4.4) 

 
Example 
 
Consider the motion 
 

331
2

222
2

11 ,, XxXtXxXtXx   
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The velocity and acceleration can be evaluated through 
 

21122

2

2112 22),(,22),( ee
x

XAee
x

XV XX
dt

d
ttXtX

dt

d
t   

 
One can write the motion in the spatial description by inverting the material description: 
 

334
1

2
2

24
2

2
1

1 ,
1

,
1

xX
t

xtx
X

t

xtx
X 








  

 
Substituting in these equations then gives the spatial description of the velocity and 
acceleration: 
 

 

 

2 2
1 2 1 1 2

1 24 4

2 2
1 2 1 1 2

1 24 4

( , ) ( , ), 2 2
1 1

( , ) ( , ), 2 2
1 1

x t x x t x
t t t t t

t t

x t x x t x
t t t

t t





 
  

 
 

  
 

v x V χ x e e

a x A χ x e e

 

 
■  

 
 
2.4.2 The Material Derivative 
 
One can analyse deformation by examining the current configuration only, discounting 
the reference configuration.  This is the viewpoint taken in Fluid Mechanics – one focuses 
on material as it flows at the current time, and does not consider “where the fluid was”.  
In order to do this, quantities must be cast in terms of the velocity.  Suppose that the 
velocity in terms of spatial coordinates, ),( txvv   is known; for example, one could 
have a measuring instrument which records the velocity at a specific location, but the 
motion χ  itself is unknown.  In that case, to evaluate the acceleration, the chain rule of 
differentiation must be applied: 
 

 
dt

d

t
tt

dt

d x

x

vv
xvv








 ),(    

 
or 
 

 vv
v

a grad




t

       acceleration (spatial description)      (2.4.5) 

 
The acceleration can now be determined, because the derivatives can be determined 
(measured) without knowing the motion. 
 
In the above, the material derivative, or total derivative, of the particle’s velocity was 
taken to obtain the acceleration.  In general, one can take the time derivative of any 
physical or kinematic property    expressed in the spatial description: 
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     v



 grad
tdt

d
       Material Time Derivative     (2.4.6) 

 
For example, the rate of change of the density ),( tx   of a particle instantaneously at 
x is 

 

v



  grad
tdt

d     (2.4.7) 

 
The Local Rate of Change 
 
The first term, t / , gives the local rate of change of density at x whereas the second 
term gradv  gives the change due to the particle’s motion, and is called the convective 
rate of change. 
 
Note the difference between the material derivative and the local derivative.  For example, 
the material derivative of the velocity, 2.4.5 (or, equivalently, ( , ) /d t dtV X  in 2.4.4, with 
X fixed) is not the same as the derivative ( , ) /t t v x  (with x fixed).  The former is the 
acceleration of a material particle X.  The latter is the time rate of change of the velocity 
of particles at a fixed location in space; in general, different material particles will occupy 
position x at different times. 
 
The material derivative dtd /  can be applied to any scalar, vector or tensor: 
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 vA
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A
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a

v

grad

grad

grad



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
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
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d
tdt

d
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d





 

      (2.4.8) 

 
Another notation often used for the material derivative is DtD / : 
 

Df df
f

Dt dt
                 (2.4.9) 

 
Steady and Uniform Flows 
 
In a steady flow, quantities are independent of time, so the local rate of change is zero 
and, for example, v  grad .  In a uniform flow, quantities are independent of 
position so that, for example, t /  
 
Example 
 
Consider again the previous example.  This time, with only the velocity ( , )tv x  known, 
the acceleration can be obtained through the material derivative: 
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as before. 

■  
 
 
The Relationship between the Displacement and Velocity 
 
The velocity can be derived directly from the displacement 2.2.42: 

 

dt

d

dt

d

dt

d uXux
v 




)(
,         (2.4.10) 

 
or 
 

 vu
uu

v grad




tdt

d
        (2.4.11) 

 
When the displacement field is given in material form one has 
 

dt

dU
V            (2.4.12) 

 
 
2.4.3 Problems 
 
1. The density of a material is given by  

xx 


 te 2

  

The velocity field is given by 

213132321 2,2,2 xxvxxvxxv   

Determine the time derivative of the density  (a) at a certain position x  in space, 
and (b) of a material particle instantaneously occupying position x. 
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2.5 Deformation Rates 
 
In this section, rates of change of the deformation tensors introduced earlier, F, C, E, etc., 
are evaluated, and special tensors used to measure deformation rates are discussed, for 
example the velocity gradient l, the rate of deformation d and the spin tensor w.  
 
 
2.5.1 The Velocity Gradient 
 
The velocity gradient is used as a measure of the rate at which a material is deforming.   
 
Consider two fixed neighbouring points, x and xx d , Fig. 2.5.1.  The velocities of the 
material particles at these points at any given time instant are )(xv  and )( xxv d , and 
 

x
x

v
xvxxv dd




 )()( , 

 
The relative velocity between the points is 
 

xlx
x

v
v ddd 




      (2.5.1) 

 
with l defined to be the (spatial) velocity gradient, 
 

j

i
ij x

v
l








 ,grad v
x

v
l  Spatial Velocity Gradient  (2.5.2) 

 

 
 

Figure 2.5.1: velocity gradient 
 
Expression 2.5.1 emphasises the tensorial character of the spatial velocity gradient, 
mapping as it does one vector into another.  Its physical meaning will become clear when 
it is decomposed into its symmetric and skew-symmetric parts below. 
 
The spatial velocity gradient is commonly used in both solid and fluid mechanics.  Less 
commonly used is the material velocity gradient, which is related to the rate of change of 
the deformation gradient: 
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and use has been made of the fact that, since X and t are independent variables, material 
time derivatives and material gradients commute. 
 
 
2.5.2 Material Derivatives of the Deformation Gradient 
 
The spatial velocity gradient may be written as 
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or 1 FFl   so that the material derivative of F can be expressed as 
 

FlF      Material Time Derivative of the Deformation Gradient     (2.5.4) 
 
Also, it can be shown that {▲Problem 1} 
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                                                       (2.5.5) 

 
 
2.5.3 The Rate of Deformation and Spin Tensors 
 
The velocity gradient can be decomposed into a symmetric tensor and a skew-symmetric 
tensor as follows (see §1.10.10): 
 

wdl          (2.5.6) 
 
where d is the rate of deformation tensor (or rate of stretching tensor) and w is the 
spin tensor (or rate of rotation, or vorticity tensor), defined by 
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   Rate of Deformation and Spin Tensors  

(2.5.7) 
 
The physical meaning of these tensors is next examined. 
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The Rate of Deformation 
 
Consider first the rate of deformation tensor d and note that 
 

 xvxl d
dt

d
dd                                                 (2.5.8) 

 
The rate at which the square of the length of xd  is changing is then 
 

   

      xdxxlxxxxxx

xxx

ddddd
dt

d
ddd
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d
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d
dt

d
dd

dt

d

222

,2

2

2




     (2.5.9) 

 

the last equality following from 2.5.6 and 1.10.31e.  Dividing across by 
2

2 xd , then leads 

to 
 

ndn ˆˆ



 Rate of stretching per unit stretch in the direction n̂        (2.5.10) 

 
where Xx dd /  is the stretch and xxn dd /ˆ   is a unit normal in the direction of xd .  

Thus the rate of deformation d gives the rate of stretching of line elements.  The diagonal 
components of d, for example  
 

1111 deed , 
 
represent unit rates of extension in the coordinate directions. 
 
Note that these are instantaneous rates of extension, in other words, they are rates of 
extensions of elements in the current configuration at the current time; they are not a 
measure of the rate at which a line element in the original configuration changed into the 
corresponding line element in the current configuration. 
 
Note: 

 Eqn. 2.5.10 can also be derived as follows: let N̂  be a unit normal in the direction of Xd , and 

n̂  be the corresponding unit normal in the direction of xd .  Then XNFxn dd ˆˆ  , or NFn ˆˆ  . 

Differentiating gives NlFNFnn ˆˆˆˆ     or  nlnn ˆˆˆ   .  Contracting both sides with n̂  

leads to   nlnnnnn ˆˆ/ˆˆˆˆ   .  But 0)ˆˆ(1ˆˆ  dtd nnnn  so, by the chain rule, 0ˆˆ nn   

(confirming that a vector n̂  of constant length is orthogonal to a change in that vector n̂d ), and 
the result follows 

 
Consider now the rate of change of the angle   between two vectors )2()1( , xx dd .  Using 
2.5.8 and 1.10.3d, 
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                       (2.5.11) 

 
which reduces to 2.5.9 when )2()1( xx dd  .  An alternative expression for this dot product 
is 
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(2.5.12) 
 
Equating 2.5.11 and 2.5.12 leads to 
 



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
 

sincosˆˆ2
2

2

1

1
21 








ndn            (2.5.13) 

 

where )()( / ii
i dd Xx  is the stretch and )()( /ˆ ii

i dd xxn   is a unit normal in the 

direction of )(idx . 
 
It follows from 2.5.13 that the off-diagonal terms of the rate of deformation tensor 
represent shear rates: the rate of change of the right angle between line elements aligned 
with the coordinate directions.  For example, taking the base vectors 11 n̂e  , 22 n̂e  , 
2.5.13 reduces to 

 

1212 2

1d                               (2.5.14) 

 
where 12  is the instantaneous right angle between the axes in the current configuration.  
 
The Spin 
 
Consider now the spin tensor w; since it is skew-symmetric, it can be written in terms of 
its axial vector ω  (Eqn. 1.10.34), called the angular velocity vector: 

 



Section 2.5 

Solid Mechanics Part III                                                                                Kelly 247

23 1 13 2 12 3

3 2 1 3 2 1
1 2 3

2 3 3 1 1 2

1 1 1

2 2 2

1
curl

2

w w w

v v v v v v

x x x x x x

   

          
                   



ω e e e

e e e

v

       (2.5.15) 

 
(The vector ω2  is called the vorticity (or spin) vector.)  Thus when d is zero, the motion 
consists of a rotation about some axis at angular velocity ω  (cf. the end of §1.10.11), 

with rωv  , r measured from a point on the axis, and vrωwr  . 
 
On the other hand, when dl  , 0w  , one has oω  , and the motion is called 
irrotational. 
 
Example (Shear Flow) 
 
Consider a simple shear flow in which the velocity profile is “triangular” as shown in 
Fig. 2.5.2.  This type of flow can be generated (at least approximately) in many fluids by 
confining the fluid between plates a distance h apart, and by sliding the upper plate over 
the lower one at constant velocity V.  If the material particles adjacent to the upper plate 
have velocity 1eV , then the velocity field is 12ev x , where hV / .  This is a steady 
flow ( / t  v 0 ); at any given point, there is no change over time.  The velocity gradient 
is 21 eel    and the acceleration of material particles is zero:  a lv 0 .  The rate of 
deformation and spin are 
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and, from 2.5.14, 12   , the rate of change of the angle shown in Fig. 2.5.2. 
 

 
 

Figure 2.5.2: shear flow 
 
The eigenvalues of d are 2/,0    ( 0det d ) and the principal invariants, Eqn. 

1.11.17, are 0III,II,0I 2
4
1  ddd  .  For 2/  , the eigenvector is 

 T0111 n  and for 2/  , it is  T0112 n  (for 0  it is 3e ).  (The 

eigenvalues and eigenvectors of w are complex.)  Relative to the basis of eigenvectors, 

h
121 )( ev xv

V

12
1e

2e
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so at 45  there is an instantaneous pure rate of stretching/contraction of material. 
 

■  
 
 
2.5.4 Other Rates of Strain Tensors 
 
From 2.2.9, 2.2.22, 
 

  XEXXCXxx dddddd
dt

d  
2

1

2

1
         (2.5.16) 

 
This can also be written in terms of spatial line elements: 
 

  xFEFxXEX dddd 1T                            (2.5.17) 
 
But from 2.5.9, these also equal xxddd , which leads to expressions for the material time 
derivatives of the right Cauchy-Green and Green-Lagrange strain tensors (also given here 
are expressions for the time derivatives of the left Cauchy-Green and Euler-Almansi 
tensors {▲Problem 3}) 
 

elelde

bllbb

dFFE
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
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



T

T

T
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



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        (2.5.18) 

 
Note that  
 

  EE ddt  

 
so that the integral of the rate of Green-Lagrange strain is path independent and, in 
particular, the integral of E  around any closed loop (so that the final configuration is the 
same as the initial configuration) is zero.  However, in general, the integral of the rate of 
deformation, 
 

dtd  

 
is not independent of the path – there is no universal function h such that dtd /hd   with 

  hd ddt .  Thus the integral dtd  over a closed path may be non-zero, and hence the 

integral of the rate of deformation is not a good measure of the total strain. 
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The Hencky Strain 
 

The Hencky strain is, Eqn. 2.2.37,   


3

1
ˆˆln

i iii nnh  , where in  are the principal 

spatial axes.  Thus, if the principal spatial axes do not change with time, 

  


3

1
ˆˆ/

i iiii nnh  .  With the left stretch  


3

1
ˆˆ

i iii nnv  , it follows that (and 

similarly for the corresponding material tensors), 11 ln,ln 





 vvvhUUUH  . 
 
For example, consider an extension in the coordinate directions, so 

  


3

1

3

1
ˆˆˆˆ

i i iiiiii NNnnvUF  .  The motion and velocity are 

 

 sum no, i
i

i
iiiiii xXxXx





   

 

so iiid  /  (no sum), and hd  .  Further, dt dh .  Note that, as mentioned above, 

this expression does not hold in general, but does in this case of uniform extension. 
 
 
2.5.5 Material Derivatives of Line, Area and Volume Elements 
 
The material derivative of a line element dtdd /)( x  has been derived (defined) through 
2.4.8.  For area and volume elements, it is necessary first to evaluate the material 
derivative of the Jacobian determinant J.  From the chain rule, one has (see Eqns 1.15.11, 
1.15.7) 
 

  FFF
F

F  ::)( T



 J
J

J
dt

d
J          (2.5.19) 

 
Hence {▲Problem 4} 
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l

div

)grad(tr

)(tr

J

J

JJ



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      (2.5.20) 

 
Since wdl   and 0tr w , it also follows that dtrJJ  . 
 
As mentioned earlier, an isochoric motion is one for which the volume is constant – thus 
any of the following statements characterise the necessary and sufficient conditions for an 
isochoric motion: 
 

0:,0tr,0div,0,1 T   FFdv JJ         (2.5.21) 
 
Applying Nanson’s formula 2.2.59, the material derivative of an area vector element is 
{▲Problem 6} 
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    dsds
dt

d
nlvn ˆdivˆ T      (2.5.22) 

 
Finally, from 2.2.53, the material time derivative of a volume element is 
 

    dvdVJJdV
dt

d
dv

dt

d
vdiv          (2.5.23) 

 
 
Example (Shear and Stretch) 
 
Consider a sample of material undergoing the following motion, Fig. 2.4.3. 
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with ( )t  , ( )k k t . 

 
 

Figure 2.4.3: shear and stretch 
 
The deformation gradient and material strain tensors are 
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the Jacobian  FdetJ , and the spatial strain tensors are 
 

11, xX

22 , xX



k




k



Section 2.5 

Solid Mechanics Part III                                                                                Kelly 251

 



































 


000

0
11

00

,

100

0

01

2

22

2
1

2
1

2
1

22

222





k

k

k

k

kk

eb  

 
This deformation can also be expressed as a stretch followed by a simple shear: 
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The velocity is 
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The velocity gradient is 
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and the rate of deformation and spin are 
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Also 
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As expected, from 2.5.20, 
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2.5.6 Problems 
 
1. (a) Differentiate the relation 1 FFI  and use 2.5.4, FlF  , to derive 2.5.5b, 

lFF 1
.

1   . 
(b) Differentiate the relation TT  FFI  and use 2.5.4, FlF  , and 1.10.3e to derive 

2.5.5c, TT
.

T   FlF . 
2. For the velocity field 

32133
2
222

2
11 3,2, xxxvxxvxxv   

determine the rate of stretching per unit stretch at (2,0,1) in the direction of the unit 
vector 

   5/34 21 ee   

And in the direction of 1e ? 

3. (a)   Derive the relation 2.5.18a, dFFC T2  directly from FFC T  
(b) Use the definitions TFFb   and 2/)( 1 bIe  to derive the relations 

2.5.18c,d: eleldebllbb  TT ,   
4. Use 2.5.4, 2.5.19, 1.10.3h, 1.10.6, to derive 2.5.20.  
5. For the motion 33212

2
11 ,,3 tXxtXXxttXx  , verify that lFF  .  What is 

the ratio of the volume element currently occupying )1,1,1(  to its volume in the 
undeformed configuration?  And what is the rate of change of this volume element, 
per unit current volume? 

6. Use Nanson’s formula 2.2.59, the product rule of differentiation, and 2.5.20, 2.5.5c, 

to derive the material time derivative of a vector area element, 2.5.22 (note that N̂ , 
a unit normal in the undeformed configuration, is constant). 
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2.6 Deformation Rates: Further Topics 
 
 
2.6.1 Relationship between l, d, w and the rate of change of R 

and U 
 
Consider the polar decomposition RUF = .  Since R is orthogonal, IRR =T , and a 
differentiation of this equation leads to 
 

TT RRRRΩR
&& −=≡              (2.6.1) 

 
with RΩ  skew-symmetric (see Eqn. 1.14.2).  Using this relation, the expression 1−= FFl & , 
and the definitions of d and w, Eqn. 2.5.7, one finds that {▲Problem 1} 
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        (2.6.2) 

 
Note that RΩ  being skew-symmetric is consistent with w being skew-symmetric, and that 
both w and d involve R, and the rate of change of U. 
 
When the motion is a rigid body rotation, then 0U =& , and 
 

TRRΩw R
&==         (2.6.3) 

 
 
2.6.2 Deformation Rate Tensors and the Principal Material and 

Spatial Bases 
 
The rate of change of the stretch tensor in terms of the principal material base vectors is 
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Consider the case when the principal material axes stay constant, as can happen in some 
simple deformations.  In that case, U&  and 1−U  are coaxial (see §1.11.5): 
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with UUUU && 11 −− =  and, as expected, from 2.5.25b, TRRΩw R
&== , that is, any spin is 

due to rigid body rotation. 
 
Similarly, from 2.2.37, and differentiating INN =⊗ ii

ˆˆ , 
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3
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iiiiiiiiii NNNNNNE &&&& λλλλ .         (2.6.6) 

 

Also, differentiating ijji δ=⋅NN ˆˆ  leads to jiji NNNN && ˆˆˆˆ ⋅−=⋅  and so the expression 
 

m
m
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3

1
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is valid provided ijW  are the components of a skew-symmetric tensor, jiij WW −= .  This 
leads to an alternative expression for the Green-Lagrange tensor: 
 

( )∑ ∑
=

≠
=

⊗−+⊗=
3

1

22
3

1,
2
1 ˆˆˆˆ

i
nmnm

nm
nm

mniiii W NNNNE λλλλ &&                       (2.6.8) 

 
Similarly, from 2.2.37, the left Cauchy-Green tensor can be expressed in terms of the 
principal spatial base vectors: 
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Then, from inspection of 2.5.18c, Tbllbb +=& , the velocity gradient can be expressed as  
{▲Problem 2} 
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     (2.6.7) 

 
 
2.6.3 Rates of Change and the Relative Deformation 
 
Just as the material time derivative of the deformation gradient is defined as  
 

⎟
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one can define the material time derivative of the relative deformation gradient, cf. §2.3.2, 
the rate of change relative to the current configuration: 
 

ttt t
=∂

∂
=

τ
τ

τ
),(),( xFxF&             (2.6.8) 
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From 2.3.8, 1),(),(),( −= tt XFXFxF ττ , so taking the derivative with respect to τ  (t is 
now fixed) and setting t=τ  gives  
 

1),(),(),( −= tttt XFXFxF &&  
 
Then, from 2.5.4, 
 

),( tt xFl &=      (2.6.9) 
 
as expected – the velocity gradient is the rate of change of deformation relative to the 
current configuration.  Further, using the polar decomposition, 
 

),(),(),( τττ xUxRxF ttt =  
 
Differentiating with respect to τ  and setting t=τ  then gives 
 

),(),(),(),(),( ttttt ttttt xUxRxUxRxF &&& +=  
 
Relative to the current configuration, IxUxR == ),(),( tt tt , so, from 2.4.34, 
 

),(),( tt tt xRxUl && +=      (2.6.10) 
 
With U symmetric and R skew-symmetric, ),(),,( tt tt xRxU &&  are, respectively, symmetric 
and skew-symmetric, and it follows that 
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again, as expected – the rate of deformation is the instantaneous rate of stretching and the 
spin is the instantaneous rate of rotation. 
 
The Corotational Derivative 

The corotational derivative of a vector a is waaa −≡ &
o

.  Formally, it is defined through 
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The definition shows that the corotational derivative involves taking a vector a in the 
current configuration and rotating it with the rigid body rotation part of the motion, Fig. 
2.6.1.  It is this new, rotated, vector which is compared with the vector )( tt Δ+a , which 
has undergone rotation and stretch. 
 

 
 

Figure 2.6.1: rotation and stretch of a vector 
 
 
2.6.4 Rivlin-Ericksen Tensors 
 
The n-th Rivlin-Ericksen tensor is defined as 
 

( ) L,2,1,0,)( ==
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n
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d
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τ

τ
τ

CA          (2.6.13) 

 
where ( )τtC  is the relative right Cauchy-Green strain.  Since ( ) IC =

=tt τ
τ , IA =0 .  To 

evaluate the next Rivlin-Ericksen tensor, one needs the derivatives of the relative 
deformation gradient; from 2.5.4, 2.3.8,  
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Then, with 2.5.5a, ( )( ) ( ) ( )TTT / ττττ lFF tt dd = ,  and 
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Thus the tensor 1A  gives a measure of the rate of stretching of material line elements (see 
Eqn. 2.5.10).  Similarly, higher Rivlin-Ericksen tensors give a measure of higher order 
stretch rates, λλ &&&&& , , and so on. 
 
 
 
 
 
 

)(ta

)()( ttt
ttt aFa

Δ+=
=Δ+

τ

)(t
ttt aR

Δ+=τ



Section 2.6 

Solid Mechanics Part III                                                                                Kelly 257

2.6.5 The Directional Derivative and the Material Time 
Derivative 

 
The directional derivative of a function )(tT  in the direction of an increment in t is, by 
definition (see, for example, Eqn. 1.15.27), 
 

)()(][ ttttt TTT −Δ+=Δ∂                (2.6.15) 
 
or 
 

t
dt

d
tt Δ=Δ∂

TT ][         (2.6.16) 

 
Setting 1=Δt , and using the chain rule 1.15.28, 
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x
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t

t
&

                 (2.6.17) 

 
The material time derivative is thus equivalent to the directional derivative in the direction 
of the velocity vector. 
 
 
2.6.6 Problems 
 
1. Derive the relations 2.6.2. 
2. Use 2.6.9 to verify 2.5.18, Tbllbb +=& . 
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2.7 Small Strain Theory 
 
When the deformation is small, from 2.2.43-4, 
 

( )
uI

FuI
UIF

grad
grad

Grad

+≈
+=
+=

              (2.7.1) 

 
neglecting the product of ugrad  with UGrad , since these are small quantities.  Thus one 
can take uU gradGrad =  and there is no distinction to be made between the undeformed 
and deformed configurations.  The deformation gradient is of the form αIF += , where 
α  is small. 
 
 
2.7.1 Decomposition of Strain 
 
Any second order tensor can be decomposed into its symmetric and antisymmetric part 
according to 1.10.28, so that 
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     (2.7.2) 

 
where ε  is the small strain tensor 2.2.48 and Ω , the anti-symmetric part of the 
displacement gradient, is the small rotation tensor, so that F can be written as 
 

ΩεIF ++=    Small Strain Decomposition of the Deformation Gradient   (2.7.3) 
 
It follows that (for the calculation of e, one can use the relation ( ) δIδI −≈+ −1  for small 
δ ) 
 

εeE
εIbC

==
+== 2

                                                  (2.7.4) 

 
Rotation 
 
Since Ω  is antisymmetric, it can be written in terms of an axial vectorω , cf. §1.10.11, so 
that for any vector a, 
 

312113123, eeeωaωΩa Ω−Ω+Ω−=×=                              (2.7.5) 
 

The relative displacement can now be written as 
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( )
XωXε

Xuu
dd

dd

×+=
= grad                          (2.7.6) 

 
The component of relative displacement given by Xω d×  is perpendicular to Xd , and so 
represents a pure rotation of the material line element, Fig. 2.7.1. 
 

 
 

Figure 2.7.1: a pure rotation 
 
 
Principal Strains 
 
Since ε  is symmetric, it must have three mutually orthogonal eigenvectors, the principal 
axes of strain, and three corresponding real eigenvalues, the principal strains, 

321 ,, eee ), which can be positive or negative, cf. §1.11.  The effect of ε  is therefore to 
deform an elemental unit sphere into an elemental ellipsoid, whose axes are the principal 
axes, and whose lengths are 321 1,1,1 eee +++ .  Material fibres in these principal 
directions are stretched only, in which case the deformation is called a pure deformation; 
fibres in other directions will be stretched and rotated. 
 
The term Xεd  in 2.7.6 therefore corresponds to a pure stretch along the principal axes.  
The total deformation is the sum of a pure deformation, represented by ε , and a rigid 
body rotation, represented by Ω .  This result is similar to that obtained for the exact finite 
strain theory, but here the decomposition is additive rather than multiplicative.  Indeed, 
here the corresponding small strain stretch and rotation tensors are εIU +=  and 

ΩIR += , so that 
 

ΩεIRUF ++==      (2.7.7) 
 
Example 
 
Consider the simple shear (c.f. Eqn. 2.2.40) 
 

3322211 ,, XxXxkXXx ==+=  
 
where k is small.  The displacement vector is 12eu kx=  so that 
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The deformation can be written as the additive decomposition 
 

XΩXεu ddd +=      or     XωXεu ddd ×+=  
 
with 
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and 3)2/( eω k−= .  For the rotation component, one can write  
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which, since for small θ , θθθ ≈≈ sin,1cos , can be seen to be a rotation through an 
angle 2/k−=θ  (a clockwise rotation). 
 
The principal values of ε  are 0,2/k±  with corresponding principal directions 

211 )2/1()2/1( een += , 212 )2/1()2/1( een +−=  and 33 en = . 
 
Thus the simple shear with small displacements consists of a rotation through an angle 

2/k  superimposed upon a pure shear with angle 2/k , Fig. 2.6.2. 
 

 
 

Figure 2.6.2: simple shear 
 

■  
 
 
2.7.2 Rotations and Small Strain 
 
Consider now a pure rotation about the 3X  axis (within the exact finite strain theory), 

XRx dd = , with  

2n 1n

θ+ =
2/k=θ
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This rotation does not change the length of line elements Xd .  According to the small 
strain theory, however,  
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which does predict line element length changes, but which can be neglected if θ  is small.  
For example, if the rotation is of the order rad10 2− , then 4

2211 10−== εε .  However, if 
the rotation is large, the errors will be appreciable; in that case, rigid body rotation 
introduces geometrical non-linearities which must be dealt with using the finite 
deformation theory. 
 
Thus the small strain theory is restricted to not only the case of small displacement 
gradients, but also small rigid body rotations. 
 
 
2.7.3 Volume Change 
 
An elemental cube with edges of unit length in the directions of the principal axes 
deforms into a cube with edges of lengths 321 1,1,1 eee +++ , so the unit change in 
volume of the cube is 
 

( )( )( ) )2(1111 321321 Oeeeeee
dV

dVdv
+++=−+++=

−                    (2.7.9) 

 
Since second order quantities have already been neglected in introducing the small strain 
tensor, they must be neglected here.  Hence the increase in volume per unit volume, called 
the dilatation (or dilation) is 
 

uε divtr321 ===++= iieeee
V

Vδ
     Dilatation              (2.7.10) 

 
Since any elemental volume can be constructed out of an infinite number of such 
elemental cubes, this result holds for any elemental volume irrespective of shape. 
 
 
2.7.4 Rate of Deformation, Strain Rate and Spin Tensors 
 
Take now the expressions 2.4.7 for the rate of deformation and spin tensors.  Replacing v 
in these expressions by u& , one has 
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For small strains, one can take the time derivative outside (by considering the ix  to be 
material coordinates independent of time): 
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The rate of deformation in this context is seen to be the rate of strain, εd &= , and the spin 
is seen to be the rate of rotation, Ωw &= . 
 
The instantaneous motion of a material particle can hence be regarded as the sum of three 
effects: 

(i) a translation given by u&  (so in the time interval tΔ  the particle has been 
displaced by tΔu& ) 

(ii) a pure deformation given by ε&  
(iii) a rigid body rotation given by Ω&  

 
 
2.7.5 Compatibility Conditions 
 
Suppose that the strains ijε  in a body are known.  If the displacements are to be 
determined, then the strain-displacement partial differential equations 
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need to be integrated.  However, there are six independent strain components but only 
three displacement components.  This implies that the strains are not independent but are 
related in some way.  The relations between the strains are called compatibility 
conditions, and it can be shown that they are given by 
 

0,,,, =−−+ ikjmjmikijkmkmij εεεε          (2.7.14) 
 
These are 81 equations, but only six of them are distinct, and these six equations are 
necessary and sufficient to evaluate the displacement field. 
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2.8 Objectivity and Objective Tensors 
 
 
2.8.1 Dependence on Observer 
 
Consider a rectangular block of material resting on a circular table.  A person stands and 
observes the material deform, Fig. 2.8.1a.  The dashed lines indicate the undeformed 
material whereas the solid line indicates the current state.  A second observer is standing 
just behind the first, but on a step ladder – this observer sees the material as in 2.8.1b.  A 
third observer is standing around the table, o45  from the first, and sees the material as in 
Fig. 2.8.1c. 
 
The deformation can be described by each observer using concepts like displacement, 
velocity, strain and so on..  However, it is clear that the three observers will in general 
record different values for these measures, since their perspectives differ.   
 
The goal in what follows is to determine which of the kinematical tensors are in fact 
independent of observer.  Since the laws of physics describing the response of a 
deforming material must be independent of any observer, it is these particular tensors 
which will be more readily used in expressions to describe material response. 
 

 
 

Figure 2.8.1: a deforming material as seen by different observers 
 
Note that Fig. 2.8.1 can be interpreted in another, equivalent, way.  One can imagine one 
static observer, but this time with the material moved into three different positions.  This 
viewpoint will be returned to in the next section. 
 
 
2.8.2 Change of Reference Frame 
 
Consider two frames of reference, the first consisting of the origin o and the basis { }ie , 
the second consisting of the origin *o  and the basis { }*

ie , Fig. 2.8.2.  A point x in space is 
then identified as having position vector iix ex =  in the first frame and position vector 

***
iix ex =  in the second frame. 

 
When the origins o and *o  coincide, *xx =  and the vector components ix  and *

ix  are 
related through Eqn. 1.5.3, *

jiji xQx = , or ijijii xQx eex *== , where [ ]Q  is the 

(a) (b) (c)
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transformation matrix 1.5.4, *
jiijQ ee ⋅= .  Alternatively, one has Eqn. 1.5.5, jjii xQx =* , 

or ****
ijjiii xQx eex == . 

 

 
 

Figure 2.8.2: two frames of reference 
 
With the shift in origin *ooa −= , one has 
 

******
iiijjiii axQx eeex +==                                       (2.8.1) 

 
where **

iia ea = .  Alternatively, 
 

iiijijii axQx eeex −== *                                        (2.8.2) 
 
where iia ea = , with jjii aQa =* . 
 
Formulae 2.8.1-2 relate the coordinates of the position vector to a point in space as 
observed from one frame of reference to the coordinates of the position vector to the same 
point as observed from a different frame of reference. 
 
Finally, consider the position vector x, which is defined relative to the frame ( )ieo, .  To 

an observer in the frame ( )** , ieo , the same position vector would appear as ( )*x , Fig. 

2.8.3.  Rotating this vector ( )*x  through TQ  (the tensor which rotates the basis { }*
ie  into 

the basis { }ie ) and adding the vector a then produces *x : 
 

( ) axQx += *T*                                                   (2.8.3) 
 
This relation will be discussed further below. 
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Figure 2.8.3: Relation between vectors in Eqn. 2.8.3 

 
 
2.8.3 Change of Observer 
 
The change of frame encompassed by Eqns. 2.8.1-2 is more precisely called a passive 
change of frame, and merely involves a transformation between vector components.  One 
would say that there is one observer but that this observer is using two frames of 
reference.  Here follows a different concept, an active change of frame, also called a 
change in observer, in which there are two observers, each with their own frame of 
reference. 
 
An observer is someone who can measure relative positions in space (with a ruler) and 
instants of time (with a clock).  An event in the physical world (for example a material 
particle) is perceived by an observer as occurring at a particular point in space and at a 
particular time.  One can regard an observer O to be a map of an event E in the physical 
world to a point x in point space (cf. §1.2.5) and a real number t.  A single event E is 
recorded as the pair ( )t,x  by an observer O and, in general, by a different pair ( )*t,*x  by a 
second observer *O , Fig. 2.8.4. 
 

 
 

Figure 2.8.4: recordings by two observers of the same event 
 
Let the two observers record three points corresponding to three events, Fig. 2.8.5.  These 
points define vectors in space, as the difference between the points (cf. §1.2.5).  It is 
assumed that both observers “see” the same Euclidean geometry, that is, if one observer 
sees an ellipse, then the other observer will see the same ellipse, but perhaps positioned 
differently in space.  To ensure that this is so, observed vectors must be related through 
some orthogonal tensor Q, for example, 
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since this transformation will automatically preserve distances between points, and angles 
between vectors (see §1.10.7), for example, 
 

( ) ( ) ( ) ( ) ( ) ( )001001
*
0

**
0

*
1 xxxxxxQxxQxxxx −⋅−=−⋅−=−⋅−             (2.8.5) 

 

 
 

Figure 2.8.5: recordings of two observers of three separate events 
 
Although all orthogonal tensors Q do indeed preserve length and angles, it is taken that 
the Q in 2.8.4-5 is proper orthogonal, i.e. a rotation tensor (cf. §1.10.8), so that orientation 
is also preserved.  Further, it is assumed that )(tQQ = , which expresses the fact that the 
observers can move relative to each other over time. 
 
Observers must also agree on time intervals between events.  Let an observer O record a 
certain event at time t and a second observer *O  record the same event as occurring at 
time *t .  Then the times must be related through 
 

α+= tt *     Observer Time Transformation        (2.8.6) 
 
where α  is a constant.  If now the observers record a second event as occurring at 1t  and 

*
1t  say, one has tttt −=− 1

**
1  as required. 

 
The observer transformation 2.8.4 involves the vectors 0xx − and *

0
* xx −   and as such 

does not require the notion of origin or coordinate system; it is an abstract symbolic 
notation for an observer transformation.  However, an origin o for O  and *o  for *O  can 
be introduced and then the points **

00 ,,, xxxx  can be regarded as position vectors in 
space, Fig. 2.8.6. 
  
The transformation 2.8.4 can now be expressed in the oft-used format 
 

xQcx )()(* tt +=     Observer (Spatial) Transformation   (2.8.7) 
 
where 
 

0
*
0 )()( xQxc tt −=                                                    (2.8.8) 

 
The transformation 2.8.7 is called a Euclidean transformation, since it preserves the 
Euclidean geometry. 
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Figure 2.8.6: position vectors for two observers of the same events 
 
 
Coordinate Systems 
 
Each observer can introduce any Cartesian coordinate system, with basis vectors { }ie  and 
{ }*

ie  say.  They can then resolve the position vectors into vector components.  These basis 
vectors can be oriented with respect to each other in any way, that is, they will be related 
through ii Ree =* , where R is any rotation tensor.  Indeed, each observer can change their 
basis, effecting a coordinate transformation.  No attempt to introduce specific coordinate 
systems will be made here since they are completely unnecessary to the notion of observer 
transformation and would only greatly confuse the issue. 
 
Relationship to Passive Change of Frame 
 
Recall the passive change of frame encompassed in Eqns. 2.8.1-2.  If one substitutes the 
actual x for ( )*x  in Eqn. 2.8.3, one has: 
 

axQx += T*                                                    (2.8.9) 
 
This is clearly an observer transformation, relating the position vector as seen by one 
observer to the position vector as seen by a second observer, through an orthogonal tensor 
and a vector, as in Eqn. 2.8.7.  In the passive change of frame, ijQ  are the components of 

the orthogonal tensor ii eeQ ⊗= * , Eqn. 1.10.25, which maps the bases onto each other: 

ii Qee =* .  Thus the transformation 2.8.1-2 can be defined uniquely by the pair Q and a.  
In that sense, the passive change of frame does indeed define an active change of frame, 
i.e. a change of observer, through Eqn. 2.8.9.  However, the concept of observer discussed 
above is the preferred way of defining an observer transformation. 
 
 
2.8.4 Objective Vectors and Tensors 
 
The observer transformation 2.8.7 encapsulates the different viewpoints observers have of 
the physical world.  They will see the same objects, but in general they will see these 
objects oriented differently and located at different positions.  The goal now is to see 

o
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which of the kinematical tensors are independent of these different viewpoints.  As a first 
step, next is introduced the concept of an objective tensor. 
 
Suppose that different observers are examining a deforming material.  In order to describe 
the material, the observers take measurements.  This will involve measurements of spatial 
objects associated with the current configuration, for example the velocity or spin.  It will 
also involve material objects associated with the reference configuration, for example line 
elements in that configuration.  It will also involve two-point tensors such as the rotation 
or deformation gradient, which are associated with both the current and reference 
configurations. 
 
It is assumed that all observers observe the reference configuration to be the same, that is, 
they record the same set of points for the material particles in the reference configuration1.  
The observers then move relative to each other and their measurements of objects 
associated with the current configuration will in general differ.  One would expect (want) 
different observers to make the same measurement of material objects despite this relative 
movement; thus one says that material vectors and tensors are objective (material) 
vectors and objective (material) tensors if they remain unchanged under the observer 
transformation 2.8.6-7. 
 
A spatial vector u on the other hand is said to be an objective (spatial) vector if it 
satisfies the observer transformation (see 2.8.4):2 
 

Quu =*      Objectivity Requirement for a Spatial Vector    (2.8.10) 
 
for all rotation tensors Q.  An objective (spatial) tensor is defined to be one which 
transforms an objective vector into an objective vector.  Consider a tensor observed as 
T and *T  by two different observers.  Take an objective vector which is observed as v 
and *v , and let Tvu =  and *** vTu = .  Then, for u to be objective, 
 

*T* vQTQQTvQuu ===                                           (2.8.11) 
 
and so the tensor is objective provided 
 

T* QTQT =  Objectivity Requirement for a Spatial Tensor   (2.8.12) 
 
Various identities can be derived; for example, for objective vectors a and b, and 
objective tensors A and B, {▲Problem 1} 
 

                                                 
1 this does not affect the generality of what follows; the notion of objective tensor is independent of the 
chosen reference configuration 
2 the time transformation 2.8.6 is trivial and does not affect the relations to be derived 
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( )
( )
( )
( )
( )
( ) ( )
( )
( ) ***

***

1**1

***

***

***

***

***

:: BABA

BAAB

AA

BAAB

bAAb

baba

baba

baba

=

=

=

=

=

⋅=⋅

⊗=⊗

+=+

−−

                                                  (2.8.13) 

  
For a scalar, 
 

φφ =*       Objectivity Requirement for a Scalar       (2.8.14) 
 
In other words, an objective scalar is one which has the same value to all observers. 
 
Finally, consider a two-point tensor.  Such a tensor is said to be objective if it maps an 
objective material vector into an objective spatial vector.  Consider then a two-point 
tensor observed as T and *T .  Take an objective material vector which is observed as v 
and *v , and let Tvu =  and *** vTu = .  A material vector is objective if it is unaffected 
by an observer transformation, so 
 

** QTvQTvQuu ===                                           (2.8.15) 
 
and so the tensor is objective provided 
 

QTT =*  Objectivity Requirement for a Two-point Tensor   (2.8.16) 
 
Thus the objectivity requirement for a two-point tensor is the same as that for a spatial 
vector. 
 
 
2.8.5 Objective Kinematics 
 
Next are examined the various kinematic vectors and tensors introduced in the earlier 
sections, and their objectivity status is determined. 
 
The motion is observed by one observer as ),( tXχx =  and by a second observer as 

),( ** tXχx = .  The observer transformation gives 
 

)(),()(),( ** tttt cXχQXχ += ,     α+= tt *                            (2.8.17) 
 
and so the motion is not an objective vector, i.e. Qχχ ≠* . 
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The Velocity and Acceleration 
 
Differentiating 2.8.17 (and using the notation x&  instead of ( )t,Xχ&  for brevity), the 
velocity under the observer transformation is 
 

cxQxQx &&&& ++=*          (2.8.18) 
 
which does not comply with the objectivity requirement for spatial vectors, 2.8.10.  In 
other words, different observers will measure different magnitudes for the velocity.  The 
velocity expression can be put in a form similar to that of elementary mechanics (the 
“non-objective” terms are on the right), 
 

( ) ccxΩxQx Q &&& +−=− **            (2.8.19) 
 
where 
 

TQQΩQ
&=             (2.8.20) 

 
is skew-symmetric (see Eqn. 1.14.2); this tensor represents the rigid body angular velocity 
between the observers (see Eqn. 2.6.1).  Note that the velocity is objective provided 

oc0Q == && , , for which 00
* cxQx += , which is called a time-independent rigid 

transformation. 
 
Similarly, for the acceleration, it can be shown that 
 

( ) ( ) ( ) ccxΩcxΩcxΩxQx QQQ &&&&&&&&& +−+−−−=− 2*2**         (2.8.21) 
 
The first three terms on the right-hand side are called the Euler acceleration, the 
centrifugal acceleration and the Coriolis acceleration respectively.  The acceleration is 
objective provided c&  and Q are constant, for which )(0

* tcxQx +=  with oc =&& , which is 
called a Galilean transformation – where the two configurations are related by a rigid 
rotation and a translational motion with constant velocity. 
 
The Deformation Gradient 
 
Consider the motion ),( tXχx = .  As mentioned, observers observe the reference 
configuration to be the same: XX =* .  The deformation is then observed as XFx dd =  
and XFx dd ** = , so that 
 

XQFXQFxQx dddd ===*                                        (2.8.22) 
 
and 
 

QFF =*                                                         (2.8.23) 
 
and so, according to 2.8.16, the deformation gradient is objective. 
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The Cauchy-Green Strain Tensors 
 
For the right and left Cauchy-Green tensors,  
 

TTT*T**

TT*T**

QbQQQFFFFb
CQFQFFFC

===

===
                               (2.8.24) 

 
Thus the material tensor C and the spatial tensor b are objective3. 
 
The Jacobian Determinant 
 
For the Jacobian determinant, using 1.10.16a, 
 

( ) JJ ===== FFQQFF detdetdetdetdet **           (2.8.25) 
 
and4 so is objective according to 2.8.14. 
 
The Rotation and Stretch Tensors 
 
The polar decomposition is RUF = , where R is the orthogonal rotation tensor and U is 
the right stretch tensor.  Then *** URQRUQFF ≡== .  Since QR  is orthogonal, the 
expression **URQRU =  is valid provided  
 

UUQRR == ** ,     (2.8.26) 
 
Thus the two-point tensor R and the material tensor U are objective. 
 
The Velocity Gradient 
 
Allowing Q to be a function of time, for the velocity gradient, using 2.5.4, 1.9.18c,  
 

QΩQlQQFFQFQFFl +=+== −−
⋅

TT11*** )()( &&    (2.8.27) 
 
where QΩ  is the angular velocity tensor 2.8.20.  On the other hand, with wdl += , and 
separating out the symmetric and skew-symmetric parts, 
 

QΩQwQwQdQd +== T*T* ,       (2.8.28) 
 
Thus the velocity gradient is not objective.  This is not surprising given that the velocity is 
not objective.  However, significantly, the rate of deformation, a measure of the rate of 
stretching of material, is objective. 
 

                                                 
3 Some authors define a second order tensor to be objective only if 2.8.12 is satisfied, regardless of whether 
it is spatial, two-point or material; with this definition, F and C would be defined as non-objective 
4 Note that Q must be a rotation tensor, not just an orthogonal tensor, here 
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The Spatial Gradient 
 
Consider the spatial gradient of an objective vector t: 
 

x
tt

∂
∂

=grad ,     ( ) *

*
*grad

x
tt

∂
∂

=      (2.8.29) 

 
Since Qtt =* , the chain rule gives 
 

( )
x
tQ

x
Qt

x
x

x
t

x
t

∂
∂

=
∂

∂
≡

∂
∂

∂
∂

=
∂
∂ *

*

**

    (2.8.30) 

 
It follows that  

 

( ) T*grad Q
x
tQt

∂
∂

=        (2.8.31) 

 
Thus the spatial gradient is objective.  In general, it can be shown that the spatial gradient 
of a tensor field of order n is objective, for example the gradient of a scalar φ , 
{▲Problem 2} φgrad  .  Further, for a vector v, {▲Problem 3} vdiv  is objective. 
 
Objective Rates 
 
Consider an objective vector field u.  The material derivative u&  is not objective.  

However, the co-rotational derivative, Eqn. 2.6.12, wuuu −= &
o

 is objective.  To show 
this, contract 2.8.28b, TT* QQQwQw &+= , to the right with Q  to get an expression for 
Q& : 
 

QwQwQ −= *&        (2.8.32) 
 
 and then 
 

o

&&& uQQuwwuuQQuwuQuQuQuu +=−+=+=→=
⋅

**** )(             (2.8.33) 
 

Then 
o

uQuwu =−
⋅

*** , or 
oo

uQu =*)( , so that the co-rotational derivative of a vector is an 
objective vector. 
 
Rates of spatial tensors can also be modified in order to construct objective rates.  For 
example,  consider an objective spatial tensor T, so T* QTQT = .  Then 
 

TTT* QQTTQQQTQT &&& ++=
⋅

                                   (2.8.34) 
 
which is clearly not objective.  However, this can be re-arranged using 2.8.32 into 
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( ) T***** QTwwTTQwTTwT +−=+−
⋅

&                                    (2.8.35) 
 
and so the quantity 
 

TwwTT +−&                                                  (2.8.36) 
 
is an objective rate, called the Jaumann rate.  Other objective rates of tensors can be 
constructed in a similar fashion, for example the Cotter-Rivlin rate, defined by 
{▲Problem 4} 
 

TlTlT ++ T&                                                  (2.8.37) 
 
Summary of Objective Kinematic Objects 
 
Table 2.8.1 summarises the objectivity of some important kinematic objects: 
 
 objective definition Type Transformation 
Jacobian determinant   Scalar JJ =*  
Deformation gradient   2-point QFF =*  
Rotation  FvFUR 11 −− ==  2-point QRR =*  
Right Cauchy-Green 
strain  

 FFC T=  Material CC =*  

Green-Lagrange 
strain  

 ( )ICE −= 2
1  Material EE =*  

Rate of Green-
Lagrange strain 

  Material 
EE &=

⋅
*  

Right Stretch   CU =  Material UU =*  
Left Cauchy-Green 
strain  

 TFFb =  Spatial T* QbQb =  

Euler-Almansi strain   ( )1
2
1 −−= bIe  Spatial T* QeQe =  

Left Stretch   bv =  Spatial T* QvQv =  
Spatial Velocity 
Gradient 

× vl grad=  Spatial TT* QQQQll &+=  

Rate of Deformation  ( )T
2
1 lld +=  Spatial T* QdQd =  

Spin × ( )T
2
1 llw −=  Spatial TT* QQQQww &+=  

Table 2.8.1: Objective kinematic objects 
 
 
2.8.6 Objective Functions 
 
In a similar way, functions are defined to be objective as follows: 
 
• A scalar-valued function φ  of, for example, a tensor A, is objective if it 

transforms in the same way as an objective scalar, 
 



Section 2.8 

Solid Mechanics Part III                                                                                Kelly 274

( ) ( )AA φφ =*          (2.8.38) 
 
• A (spatial) vector-valued function a of a tensor A is objective if it transforms in 

the same way as an objective vector 
 

)()(* AQvAv =           (2.8.39) 
 
• A (spatial) tensor-valued function f of a tensor A is objective if it transforms 

according to 
 

T* )()( QAQfAf =            (2.8.40) 
 
Objective functions of the Deformation Gradient 
 
Consider an objective scalar-valued function φ  of the deformation gradient F, )(Fφ .  The 
function is objective if )(* Fφφ = .  But also, 
 

( ) ( )QFF φφφ == **                       (2.8.41) 
 
Using the polar decomposition theorem, ( ) ( )QRURU φφ = .  Choosing the particular 
rigid-body rotation TRQ =  then leads to 
 

( ) ( )URU φφ =                   (2.8.42) 
 
which leads to the reduced form 
 

( ) ( )UF φφ =                (2.8.43)   
 
Thus for the scalar function φ  to be objective, it must be independent of the rotational 
part of F, and depends only on the stretching part; it cannot be a function of the nine 
independent components of the deformation gradient, but only of the six independent 
components of the right stretch tensor. 
 
Consider next an objective (spatial) tensor-valued function f of the deformation gradient 
F, )(Ff .  According to the definition of objectivity of a second order tensor, 2.8.12: 
 

( ) T* QFQff =                 (2.8.44) 
 
But also, 
 

( ) ( )QFfFff == **                    (2.8.45) 
 
Again, using the polar decomposition theorem and choosing the particular rigid-body 
rotation TRQ =  leads to 
 

( ) ( )RRUfRUf T=        (2.8.46) 
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which leads to the reduced form 
 

( ) ( ) TRURfFf =      (2.8.47) 
 
Thus for f to be objective, its dependence on F must be through an arbitrary function of U 
together with a more explicit dependence on R, the rotation tensor 
 
Example 
 
Consider the tensor function ( )2T)( FFFf α= .  Then 
 

[ ] [ ] ( ) TT2T2T))(()( QFQfQFFQQFQFQFf === αα  
 
and so the objectivity requirement is satisfied.  According to the above, then, one can 
evaluate ( ) ( ) ( )2TT UURRUfRUf α== , and the reduced form is 
 

( ) T4T2T RRURUURf αα ==  
 

Also, since 2UC =  and ( )ICE −= 2
1 , alternative reduced forms are 

 
( ) ( ) T

3
T

2 , RERffRCRff ==  
■ 

 
Finally, consider a spatial tensor function f of a material tensor T.  Then 
 

)()()(,)()( **T* TfTfTfQTQfTf ===                         (2.8.48) 
 
It follows that 
 

TQfQf =                                                         (2.8.49) 
 
This is true only in the special case IQ =  and so is not true in general.  It follows that the 
function f is not objective. 
 
 
2.8.7 Problems 
 
1. Derive the relations 2.8.13 
2. Show that the spatial gradient of a scalar φ  is objective. 
3. Show that the divergence of a spatial vector v is objective.  [Hint: use the definition 

1.11.9 and identity 1.9.10e] 
4. Verify that the Rivlin-Cotter rate of a tensor T, TlTlT ++ T , is objective. 
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2.9 Rigid Body Rotations of Configurations 
 
In this section are discussed rigid body rotations to the current and reference 
configurations. 
 
 
2.9.1 A Rigid Body Rotation of the Current Configuration 
 
As mentioned in §2.8.1, the circumstance of two observers, moving relative to each other 
and examining a fixed configuration (the current configuration) is equivalent to one 
observer taking measurements of two different configurations, moving relative to each 
other1.  The objectivity requirements of the various kinematic objects discussed in the 
previous section can thus also be examined by considering rigid body rotations and 
translations of the current configuration. 
 
Any rigid body rotation and translation of the current configuration can be expressed in 
the form 
 

( ) ( ) )(,)(,* tttt cXxQXx +=                                       (2.9.1) 
 
where Q is a rotation tensor.  This is illustrated in Fig. 2.9.5.  The current configuration is 
denoted by S  and the rotated configuration by *S . 
 
Just as XFx dd = , the deformation gradient for the configuration *S  relative to the 
reference configuration 0S  is defined through XFx dd ** = .  From 2.9.1, as in §2.8.5 (see 

Eqn. 2.8.23),  and similarly for the right and left Cauchy-Green tensors, 
 

TT***

*T**

*

QbQFFb
CFFC

QFF

==

==

=

            (2.9.2) 

 
Thus in the deformations SS →0:F  and *

0
* : SS →F , the right Cauchy Green tensors, 

C and *C , are the same, but the left Cauchy Green tensors are different, and related 
through T* QbQb = . 
 
All the other results obtained in the last section in the context of observer transformations, 
for example for the Jacobian, stretch tensors, etc., hold also for the case of rotations to the 
current configuration. 
 

                                                 
1 Although equivalent, there is a difference: in one, there are two observers who record one event (a material 
particle say) as at two different points, in the other there is one observer who records two different events 
(the place where the one material particle is in two different configurations) 
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Figure 2.9.1: a rigid body rotation and translation of the current configuration 
 
 
2.9.2 A Rigid Body Rotation of the Reference Configuration 
 
Consider now a rigid-body rotation to the reference configuration.  Such rotations play an 
important role in the notion of material symmetry (see Chapter 5). 
 
The reference configuration is denoted by 0S  and the rotated/translated configuration by 

◊S , Fig. 2.9.2.  The deformation gradient for the current configuration S relative to ◊S  is 
defined through XQFXFx ddd ◊◊◊ == .  But XFx dd =  and so (and similarly for the 
right and left Cauchy-Green tensors) 
 

bFFb
QCQFFC

FQF

==

==

=

◊◊◊

◊◊◊

◊

T

TT

T

           (2.9.3) 

 
Thus the change to the right (left) Cauchy-Green strain tensor under a rotation to the 
reference configuration is the same as the change to the left (right) Cauchy-Green strain 
tensor under a rotation of the current configuration.  
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Figure 2.9.2: a rigid body rotation of the reference configuration 
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2.10 Convected Coordinates 
 
An introduction to curvilinear coordinate was given in section 1.16, which serves as an 
introduction to this section. As mentioned there, the formulation of almost all mechanics 
problems, and their numerical implementation and solution, can be achieved using a 
description of the problem in terms of Cartesian coordinates. However, use of curvilinear 
coordinates allows for a deeper insight into a number of important concepts and aspects of, in 
particular, large strain mechanics problems. These include the notions of the Push Forward 
operation, Lie derivatives and objective rates. 
 
As will become clear, note that all the tensor relations expressed in symbolic notation already 

discussed, such as CU  , iii nNF ˆ , lFF  , etc., are independent of coordinate system, 

and hold also for the convected coordinates discussed here. 
 
 
2.10.1 Convected Coordinates 
 
In the Cartesian system, orthogonal coordinates ,i iX x  were used.  Here, introduce the 

curvilinear coordinates i .  The material coordinates can then be written as 
 

),,( 321  XX      (2.10.1) 
 
so i

iX EX   and 

 

i
i

i
i ddXd GEX   ,    (2.10.2) 

 
where iG  are the covariant base vectors in the reference configuration, with corresponding 

contravariant base vectors iG , Fig. 2.10.1, with 
 

i
jj

i GG           (2.10.3) 
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Figure 2.10.1: Curvilinear Coordinates 
 
The coordinate curves form a net in the undeformed configuration (over the surfaces of 
constant i ).  One says that the curvilinear coordinates are convected or embedded, that is, 
the coordinate curves are attached to material particles and deform with the body, so that 
each material particle has the same values of the coordinates i  in both the reference and 
current configurations. The covariant base vectors are tangent the coordinate curves. 
 
In the current configuration, the spatial coordinates can be expressed in terms of a new, 
“current”, set of curvilinear coordinates 
 

),,,( 321 t xx ,     (2.10.4) 
 
with corresponding covariant base vectors ig  and contravariant base vectors ig , with 

 

i
i

i
i ddxd gex   ,    (2.10.5) 

 
As the material deforms, the covariant base vectors ig  deform with the body, being 

“attached” to the body. However, note that the contravariant base vectors ig  are not as such 
attached; they have to be re-evaluated at each step of the deformation anew, so as to ensure 
that the relevant relations, e.g. i i

j j g g , are always satisfied. 

 
Example 1 
 
Consider a pure shear deformation, where a square deforms into a parallelogram, as 
illustrated in Fig. 2.10.2. In this scenario, a unit vector 2E  in the “square” gets mapped to a 

vector 2g  in the parallelogram1. The magnitude of 2g  is 1 / sin . 

 

                                                 
1 This differs from the example worked through in section 1.16; there, the vector g2 maintained unit magnitude. 
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Figure 2.10.2: A pure shear deformation 
 
Consider now a parallelogram (initial condition) deforming into a new parallelogram (the 
current configuration), as shown in Fig. 2.10.3. 
 

 
 

Figure 2.10.3: A pure shear deformation of one parallelogram into another 
 
Keeping in mind that the vector 2g  will be of magnitude 1 / sin , the transformation 

equations 2.10.1 for the configurations shown in Fig. 2.10.3 are2 
 

1 1 2 2 2 3 3

1 1 2 2 2 3 3

1 1 2 2 2 3 3

1 1 2 2 2 3 3

1
, ,

tan
1

, ,
tan

1
, ,

tan

1
, ,

tan

X X X X

X X X

x x x x

x x x









      

      

      

       

                           (2.10.6) 

                                                 
2 Constants have been omitted from these expressions (which represent the translation of the “parallelogram 
origin” from the Cartesian origin). 
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Following on from §1.16, Eqns. 1.16.19, the covariant base vectors are: 
 

1 1 2 1 2 3 3

1 1 2 1 2 3 3

1
, , ,

tan

1
, , ,

tan

m

i mi

m

i mi

X

X






    



    


G E G E G E E G E

g e g e g e e g e

             (2.10.7) 

 
and the inverse expressions 
 

1 1 2 1 2 3 3

1 1 2 1 2 3 3

1
, ,

tan
1

, ,
tan





    

    

E G E G G E G

e g e g g e g
                     (2.10.8) 

 
Line elements in the configurations can now be expressed as 

 
i i i

i ii

i i i
i ii

d
d dX d d

d
d dx d d

    


    


X
X E G

x
x e g

                                   (2.10.9) 

 
The scale factors, i.e. the magnitudes of the covariant base vectors, are (see Eqns. 1.16.36) 
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The contravariant base vectors are (see Eqn. 1.16.23) 
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              (2.10.11) 

 
and the inverse expressions 
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The magnitudes of the contravariant base vectors, are 
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The metric coefficients are (see Eqns. 1.16.27) 
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    (2.10.14) 

 
The transformation determinants are (consistent with zero volume change), from Eqns. 
1.16.32-34, 
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                     (2.10.15) 

■  
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Example 2 
 
Consider a motion whereby a cube of material, with sides of length 0L , is transformed into a 

cylinder of radius R  and height H , Fig. 2.10.4. 
 

 
 

Figure 2.10.4: a cube deformed into a cylinder 
 
A plane view of one quarter of the cube and cylinder are shown in Fig. 2.10.5. 
 

 
 

Figure 2.10.5: a cube deformed into a cylinder 
 
The motion and inverse motion are given by 
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       (basis: ie )                       (2.10.16) 
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       (basis: iE )                 (2.10.17) 

 
Introducing a set of convected coordinates, Fig. 2.10.6, the material and spatial coordinates 
are 
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                         (2.10.18) 

 
and (these are simply cylindrical coordinates) 
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33

212

211

sin

cos







x

x

x

                                  (2.10.19) 

 
A typical material particle (denoted by p) is shown in Fig. 2.10.6.  Note that the position 
vectors for p have the same i  values, since they represent the same material particle. 
 

 
 

Figure 2.10.6: curvilinear coordinate curves 
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■  
 
 
2.10.2 The Deformation Gradient 
 
With convected curvilinear coordinates, the deformation gradient is 
 

 

1 2 3
1 2 3

1 0 0

0 1 0

0 0 1

i
i

j
i

 
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 
   
  

F g G

g G g G g G

g G

,                (2.10.20) 

 
The deformation gradient operates on a material vector (with contravariant components) 

i
iVV G , resulting in a spatial tensor i

ivv g  (with the same components iV v ), for 

example, 
 

 i j i
i j id d d d     F X g G G g x          (2.10.21) 

 
To emphasise the point, line elements mapped between the configurations have the same 
coordinates i : a line element 1 2 3

1 2 3d d d    G G G  gets mapped to  

 

  1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3d d d d d d               g G g G g G G G G g g g  

(2.10.22) 
 
This shows also that line elements tangent to the coordinate curves are mapped to new 
elements tangent to the new coordinate curves; the covariant base vectors iG  are a field of 

tangent vectors which get mapped to the new field of tangent vectors ig , as illustrated in Fig. 

2.10.7. 
 

 
 

Figure 2.10.7: Vectors tangent to coordinate curves 
 

dx
dX
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The deformation gradient F, the transpose TF  and the inverses T1 ,  FF , map the base 

vectors in one configuration onto the base vectors in the other configuration (that the 1F  and 
TF  in this equation are indeed the inverses of F  and TF  follows from 1.16.63): 
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



T

T

1

     Deformation Gradient    (2.10.23) 

 
Thus the tensors F  and 1F  map the covariant base vectors into each other, whereas the 
tensors TF  and TF  map the contravariant base vectors into each other, as illustrated in Fig. 
2.10.8. 
 

 
 

Figure 2.10.8: the deformation gradient, its transpose and the inverses 
 
 
It was mentioned above how the deformation gradient maps base vectors tangential to the 
coordinate curves into new vectors tangential to the coordinate curves in the current 
configuration. In the same way, contravariant base vectors, which are normal to coordinate 
surfaces, get mapped to normal vectors in the current configuration. For example, the 
contravariant vector 1G  is normal to the surface of constant 1 , and gets mapped through 

TF  to the new vector 1g , which is normal to the surface of constant 1  in the current 
configuration. 
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Example 1 continued 
 
Carrying on Example 1 from above, in Cartesian coordinates, 4 corners of an initial 
parallelogram (see Fig. 2.10.3) get mapped as follows: 
 

   
   

   
   

0,0 0,0
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1 / tan ,1 1 / tan ,1

1 1 / tan ,1 1 1 / tan ,1

 

 







  

                                      (2.10.24) 

 
This corresponds to a deformation gradient with respect to the Cartesian bases: 
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where 
 

1 1

tan tan 
                                               (2.10.26) 

 
From the earlier work with example 1, the deformation gradient can be re-expressed in terms 
of different base vectors: 
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            (2.10.27) 

 
which is Eqn. 2.10.20. 
 
In fact, F can be expressed in a multitude of different ways, depending on which base vectors 
are used. For example, from the above, F can also be expressed as 
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(2.10.28) 
 
 
(This can be verified using Eqn. 2.10.30a below.) 
 
Components of F 
 
The various components of F and its inverses and the transposes, with respect to the different 
bases, are: 
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(2.10.29) 

 
The components of F with respect to the reference bases    ii GG ,  are 
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and similarly for the components with respect to the current bases. 
 
Components of the Base Vectors in different Bases 
 
The base vectors themselves can be expressed alternately: 
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showing that some of the components of the deformation gradient can be viewed also as  
components of the base vectors.  Similarly, 
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For the contravariant base vectors, one has 
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and 
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

 TTT                            (2.10.34) 

 
 
2.10.3 Reduction to Material and Spatial Coordinates 
 
Material Coordinates 
 
Suppose that the material coordinates iX  with Cartesian basis are used (rather than the 
convected coordinates with curvilinear basis iG ), Fig. 2.10.9.  Then 
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                      (2.10.36) 

 
which are Eqns. 2.2.2, 2.2.4.  Thus xGrad  is the notation for F and gradX  is the notation for 

1F , to be used when the material coordinates iX  are used to describe the deformation. 

 

 
 

Figure 2.10.9: Material coordinates and deformed basis 
 
 
Spatial Coordinates 
 
Similarly, when the spatial coordinates ix  are to be used as independent variables, then 
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The descriptions are illustrated in Fig. 2.10.10.  Note that the base vectors iG , ig  are not the 

same in each of these cases (curvilinear, material and spatial). 
 

 
 

Figure 2.10.10: deformation described using different independent variables 
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2.10.4 Strain Tensors 
 
The Cauchy-Green tensors 
 
The right Cauchy-Green tensor C and the left Cauchy-Green tensor b are defined by Eqns. 
2.2.10, 2.2.13, 
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    (2.10.39) 

 
Thus the covariant components of the right Cauchy-Green tensor are the metric coefficients 

ijg . This highlights the importance of C: the ij i jg  g g  give a clear measure of the 

deformation occurring. (It is possible to evaluate other components of C, e.g. ijC , and also 
its components with respect to the current basis, but only the components ijC  with respect to 

the reference basis are (normally) used in the analysis.)  
 
The Stretch 
 
Now, analogous to 2.2.9, 2.2.12, 
 

xxbXX

XXCxx

dddddS

ddddds
12

2
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
                                          (2.10.40) 

 
so that the stretches are, analogous to 2.2.17, 
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X

X


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                     (2.10.41) 

 
The Green-Lagrange and Euler-Almansi Tensors 
 
The Green-Lagrange strain tensor E and the Euler-Almansi strain tensor e are defined 
through 2.2.22, 2.2.24, 
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 
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
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2

1

2

2

1

2                          (2.10.42) 

 
The components of E and e can be evaluated through (writing IG  , the identity tensor 
expressed in terms of the base vectors in the reference configuration, and Ig  , the identity 
tensor expressed in terms of the base vectors in the current configuration) 
 

     

      ji
ij

ji
ijij

ji
ij

ji
ij

ji
ij

ji
ijij

ji
ij

ji
ij

eGgGg

EGgGg

ggggggggbge

GGGGGGGGGCE







2

1

2

1

2

1
2

1

2

1

2

1

1

 

(2.10.43) 
 
Note that the components of E and e with respect to their bases are equal, ijij eE   (although 

this is not true regarding their other components, e.g. ijij eE  ). 
 
Example 1 continued 
 
Carrying on Example 1 from above, consider now an example vector 
 

 x

i
y

V

V

 
  
 

V E                                              (2.10.44) 

 
The contravariant and covariant components are 
 

   
1

,tan 1

tan

x
x y i

i
x y

y

V
V V

V VV




          
    

V G V G               (2.10.45) 

 
The magnitude of the vector can be calculated through (see Eqn. 1.16.52 and 1.16.49) 
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     (2.10.46) 
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The new vector is obtained from the deformation gradient: 
 

 
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0 1

1
1 0

tantan
0 1
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E

G

v F V e
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                   (2.10.47) 

 
In terms of the contravariant vectors: 
 

 1 1
1

tan tan

x y

j i
j

x y

V V

v g
V V

 

  
           

v g                               (2.10.48) 

 
Note that the contravariant components do not change with the deformation, but the covariant 
components do in general change with the deformation. 
 
The magnitudes of the vectors before and after deformation are given by the Cauchy-Green 
strain tensors, whose coefficients are those of the metric tensors (the first of these is the same 
as 2.10.46) 
 

1 1 T 1 1

T

i i i i i i

i i i i i i

k i j l i j
k ij l ij

k i j l i j
k ij l ij

v G v G v v
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           

       

g g g g g g

G G G G G G

V V F v F v vF F v vb v g g g g

v v F V F V V F F V VCV G G G G

      (2.10.49) 

 
From this, the magnitude of the vector after deformation is 
 

   2 2 2i j
ij x y y x yg V V V V V V V      v v                  (2.10.50) 

 
 
2.10.5 Intermediate Configurations 
 
Stretch and Rotation Tensors 
 
The polar decompositions vRRUF   have been described in §2.2.5.  The decompositions 
are illustrated in Fig. 2.10.11.  In the material decomposition, the material is first stretched by 
U and then rotated by R.  Let the base vectors in the associated intermediate configuration be 
 iĝ .  Similarly, in the spatial decomposition, the material is first rotated by R and then 

stretched by v.  Let the base vectors in the associated intermediate configuration in this case 
be  iG .  Then, analogous to Eqn. 2.10.23, {▲Problem 1} 
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                                  (2.10.52) 

 

 
 

Figure 2.10.11: the material and spatial polar decompositions 
 
 
Note that U and v symmetric, TUU  , Tvv  , so 
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Similarly, for the rotation tensor, with R orthogonal, T1 RR  , 
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The above relations can be checked using Eqns. 2.10.23 and RUF  , vRF  , 11   RFv , 
etc. 
 
Various relations between the base vectors can be derived, for example, 
 

   

j
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j
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j
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j
i

jiji

jijijiji
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




                    (2.10.57) 

 
Deformation Gradient Relationship between Bases 
 
The various base vectors are related above through the stretch and rotation tensors.  The 
intermediate bases are related directly through the deformation gradient.  For example, from 
2.10.53a, 2.10.55b, 
 

iiii GFGURUGg ˆˆˆ TT                                      (2.10.58) 

 
In the same way, 
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                                                (2.10.59) 

 
Tensor Components 
 
The stretch and rotation tensors can be decomposed along any of the bases.  For U the most 
natural bases would be  iG  and  iG , for example, 
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with j

i
j

i
i
j

i
j

jiij
jiij UUUUUUUU 


  ,,, .  One also has 
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with similar symmetry.  Also, 
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and 
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with similar symmetry.  Note that, comparing 2.10.60a, 2.10.61a, 2.10.62a, 2.10.63a and 
using 2.10.57, 
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Now note that rotations preserve vectors lengths and, in particular, preserve the metric, i.e., 
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GGGG
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                                (2.10.65) 

 
Thus, again using 2.10.57, and 2.10.60-2.10.63, the contravariant components of the above 

tensors are also equal,    ijijijij vvUU 11   . 
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As mentioned, the tensors can be decomposed along other bases, for example, 
 

jijiij
ji

ij vv gGvggggv  ˆ,                                (2.10.66) 

 
 
2.10.6 Eigenvectors and Eigenvalues 
 
Analogous to §2.2.5, the eigenvalues of C are determined from the eigenvalue problem 
 

  0det  IC C                                                  (2.10.67) 

 
leading to the characteristic equation 1.11.5 
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with principal scalar invariants 1.11.6-7 
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The eigenvectors are the principal material directions iN̂ , with 

 

  0NIC  ii
ˆ                                                  (2.10.70) 

 
The spectral decomposition is then 
 





3

1

2 ˆˆ
i

iii NNC                                                (2.10.71) 

 
where 2

ii  C  and the i  are the stretches.  The remaining spectral decompositions in 

2.2.37 hold also.  Note also that the rotation tensor in terms of principal directions is (see 
2.2.35) 
 

i
ii

i NnNnR ˆˆˆˆ                                                (2.10.72) 

 
where in̂  are the spatial principal directions. 
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2.10.7 Displacement and Displacement Gradients 
 
Consider the displacement u of a material particle.  This can be written in terms of covariant 
components iU  and iu : 

 
i

i
i

i uU gGXxu  .               (2.10.73) 

 
The covariant derivative of u can be expressed as 
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im
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u
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                                           (2.10.74) 

 
The single line refers to covariant differentiation with respect to the undeformed basis, i.e. 
the Christoffel symbols to use are functions of the ijG .  The double line refers to covariant 

differentiation with respect to the deformed basis, i.e. the Christoffel symbols to use are 
functions of the ijg . 

 
Alternatively, the covariant derivative can be expressed as 
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and so 
 

 
    m

m

imi

mm
i

m

imii

m
m
imi

mm
i

m

imii

fuu

FUU

ggggG

GGGGg










1


                               (2.10.76) 

 
The last equalities following from 2.10.31-32. 
 
The components of the Green-Lagrange and Euler-Almansi strain tensors 2.10.43 can be 
written in terms of displacements using relations 2.10.76 {▲Problem 2}: 
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                                (2.10.77) 

 
In terms of spatial coordinates,   j

ij
iii

ii XxX egEG  /,, , j
iji XUU  / , the 

components of the Euler-Lagrange strain tensor are 
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which is 2.2.46.  
 
 
2.10.8 The Deformation of Area and Volume Elements 
 
Differential Volume Element 
 
Consider a differential volume element formed by the elements i

id G in the undeformed 

configuration, Eqn. 1.16.43: 
 

321  dddGdV         (2.10.79) 
 
where, Eqn. 1.16.31,1.16.34, 
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The same volume element in the deformed configuration is determined by the elements 

i
id g : 
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  jiijij ggg gg  ,det    (2.8.82) 

 
From 1.16.53 et seq., 2.10.11, 
 

F

GGG

ggg

det

321

321

321

G

GFFF

FFF

g

ijk
kji

kji
kji














        (2.10.83) 

 
where ijk  is the Cartesian permutation symbol, and so the Jacobian determinant is (see 

2.2.53) 
 

Fdet
G

g

dV

dv
J           (2.10.84) 
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and Fdet  is the determinant of the matrix with components i

jF . 

 
Differential Area Element 
 
Consider a differential surface (parallelogram) element in the undeformed configuration, 

bounded by two vector elements )1(Xd  and )2(Xd , and with unit normal N̂ .  Then the vector 
normal to the surface element and with magnitude equal to the area of the surface is, using 
1.16.54, given by 
 

  kji
ijkj

j
i

i ddedddddS GGGXXN G )2()1()2()1()2()1(ˆ           (2.10.85) 

 
where  G

ijke  is the permutation symbol associated with the basis iG , i.e.  

 
  Ge ijkkjiijkijk   GGGG .                                (2.10.86) 

 
Using kk gFG T , one has 
 

kji
ijk ddGdS gFN T)2()1(ˆ                                    (2.10.87) 

 
Similarly, the surface vector in the deformed configuration with unit normal n̂  is 
 

   kji
ijkj

j
i

i ddeddddds gggxxn g )2()1()2()1()2()1(ˆ            (2.10.88) 

 
where  g

ijke  is the permutation symbol associated with the basis ig , i.e.  

 
  ge ijkkjiijkijk   gggg .                                   (2.10.89) 

 
Comparing the two expressions for the areas in the undeformed and deformed configurations, 
2.10.87-88, one finds that 
 

  dSdS
G

g
ds NFFNFn TT detˆ                                 (2.10.90) 

 
which is Nanson’s relation, Eqn. 2.2.59. This is consistent with was said earlier in relation to 
Fig. 2.10.8 and the contravariant bases: TF  maps vectors normal to the coordinate curves in 
the initial configuration into corresponding vectors normal to the coordinate curves in the 
current configuration. 
 
 



Section 2.10 

Solid Mechanics Part III                                                                                Kelly 303

2.10.9 Problems 
 
1. Derive the relations 2.10.51. 
2. Use relations 2.10.76, with jiijg gg   and jiijG GG  , to derive 2.10.77 

   
   

j

n

inijjiijijij

j

n

inijjiijijij

uuuuGge

UUUUGgE





2

1

2

1
2

1

2

1
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Convected Coordinates: Time Rates of Change 
 
In this section, the time derivatives of kinematic tensors described in §2.4-2.6 are now 
described using convected coordinates. 
 
 
2.11.1 Deformation Rates 
 
Time Derivatives of the Base Vectors and the Deformation Gradient 
 
The material time derivatives of the material base vectors are zero: 0i

i  G G  .  The 

material time derivatives of the deformed base vectors are, from 2.10.23, (and using 

 1 1 1/d dt    I FF FF FF   ) 

 
1 1

T T T T T

i i i i

i i i i

 

  

   

   

g FG FF g FF g

g F G F F g F F g

  
  

                               (2.11.1) 

 
with, again from 2.10.23, 
 

i
i

i
i

i
i

i
i

gGF

GgF

gGF

GgF



















T

T

1

                                                   (2.11.2) 

 
The Velocity Gradient 
 
The velocity gradient is defined by 2.5.2, vl grad , so that, using 1.16.23, 
 

j
j

i
i

j

j
i

i xx
gvevev

x
vl 



















                     (2.11.3) 

 
Also, from 1.16.19, 
 

iii 







vxg

                                                (2.11.4) 

 
so that, as an alternative to 2.11.3,  

 
i

i ggl                                                       (2.11.5) 

 
The components of the spatial velocity gradient are 
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jijiij

j
imi

mjj
i

j
i

j
i

j
ii

j

jijiij

l

gl

l

l

gglgg

gggglgg

gglgg

gglgg


















                               (2.11.6) 

 
Convected Bases 
 
From 2.11.1, 2.11.2 and 2.11.5, 

 

lglg

glglgg
i

i

ii
ii




T

T
                                          (2.11.7) 

 
Contracting the first of these with id  leads to 
 

i
i

i
i dd  lgg                                                 (2.11.8) 

 
which is equivalent to 2.5.1, xlv dd  . 
 
Time Derivatives of the Deformation Gradient in terms of the Velocity Gradient 
 
Eqns. 2.11.2 can also be re-expressed using Eqns. 2.11.7: 
 

T

1 1

T T T T

T T T T

i i i
i i i

i i
i i

i i i
i i i

i i
i i

 

 

      

      

         

    

F g G g l G lg G lF

F G g G g l F l

F g G g l G l g G l F

F G g G g l F l

 
 
 
 

                 (2.11.9) 

 
which are Eqns. 2.5.4-5. 
 
An alternative way of arriving at Eqns. 2.11.7 is to start with Eqns. 2.11.9: the covariant base 
vectors iG  convect to  i tg  over time through the time-dependent deformation gradient: 

   i it tg F G . For this relation to hold at all times, one must have, from Eqn. 2.11.9b, 

 

 

1

1 1

1

0i i

i i

i i



 



 

 

  

G F g

F g F g

F lg g




 


                                           (2.11.10) 

 
Thus, in order to maintain the convection of the tangent basis over time, one requires that 
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i ig lg                                                            (2.11.11) 

 
The contravariant base vectors iG  transform to  i tg  over time through the time-dependent 

inverse transpose of the deformation gradient:    Ti it tg F G . For this relation to hold at 

all times, one must have, from Eqn. 2.11.9d, 
 

 

T

T T

T T

0i i

i i

i i

 

 

 

G F g
F g F g

F l g g




 


                                           (2.11.12) 

 
Thus, in order to maintain the convection of the normal basis over time, one requires that 
 

Ti i g l g                                                          (2.11.13) 
 
 
The Rate of Deformation and Spin Tensors 
 
From 2.5.6, wdl  .  The covariant components of the rate of deformation and spin are 

 

     

     jijijm
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mijiij

jijijijm
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gggggggggggggllg
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

2
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2

1

2

1
2

1

2

1

2

1

2

1

T

T

 

                                      (2.11.14) 
 
Alternatively, from 2.11.6a, 
 

   T1 1

2 2

1

2
1

2

i j i j i j

i j i j

ij i jg



      

  

 

d l l g g g g g g

g g g g

g g

 



                        (2.11.15) 
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2.12 Pull Back, Push Forward and Lie Time Derivatives 
 
This section is in the main concerned with the following issue: an observer attached to a 
fixed, say Cartesian, coordinate system will see a material move and deform over time, and 
will observe various vectorial and tensorial quantities to change also. However, a 
hypothetical observer attached to the deforming material, and moving and deforming with 
the material, will see something different. The question is: what quantities will be seen to 
change from this embedded observer’s viewpoint? 
 
 
2.12.1 Time Derivatives of Spatial Fields 
 
In terms of the spatial basis, a spatial vector v can be expressed in terms of the covariant 
components and contravariant components, 
 

,i i
i iv v v g v g                      (2.12.1) 

 
We want to distinguish between two quantities. The first is the material time derivative of the 
vector v: 
 

,i i i i i i
i i i i i iv v v v v v
 

     v g g g v g g g                               (2.12.2) 

  
The second is the time derivative holding the base vectors fixed,  
 

,i i
i iv vg g                                                       (2.12.3) 

  
This latter is called the convected derivative and is the rate of the change as seen by an 
observer attached to the deforming bases. 
 
From Eqn. 2.12.1, the components of v can be expressed as 
 

, i i
i iv v   v g v g                            (2.12.4) 

 
Taking the material time derivative, and using Eqns. 2.11.11, 2.11.13, 
 

 T

i i

i i

i

v


 

   

  

v g

v g v g

v l v g






,          

 

i i

i i

i

v


 

   

  

v g

v g v g

v lv g





            (2.12.5) 

 
Thus there are two convected derivatives of a vector, depending on whether one is using 
covariant or contravariant components: 
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Ti

i

i
i

v

v

 

 

g v l v

g v lv

 
 

                            (2.12.6) 

 
As will be seen below, these quantities are Lie derivatives of the vector v. 
 
The time derivative of the components can be expressed in an alternative way, by expressing 
the spatial base vectors , i

ig g  in terms of the material base vectors , i
iG G ; using Eqns. 

2.10.23: 
 

T

i i

i

i

v






 

 



v g

v FG

F vG



,            T

1

i i

i

i

v








 

 



v g

v F G

F vG



                                 (2.12.7) 

 
So, as an alternative to Eqns. 2.12.6,  
 

T

1

i
i

i
i

v

v










G F v

G F v




                           (2.12.8) 

 
As will be seen further below, the quantities on the right are the material time derivatives of 
the pull-back of the vector v. 
 
Repeating the above, now for a spatial tensor a: in terms of the spatial basis, a can be 
expressed in terms of the covariant components and contravariant components as 
 

,i j ij
ij i ja a   a g g a g g                                 (2.12.9) 

 
The material time derivative of the tensor a is 
 

i j i j i j i j
ij ij ij ij

ij ij ij ij
i j i j i j i j

a a a a

a a a a





       

       

a g g g g g g g g

g g g g g g g g

  

 
                   (2.12.10) 

  
and the convected derivative is the first term:  
 

,i j ij
ij i ja a g g g g                                     (2.12.11) 

 
The components of a can be expressed as 
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, ij i j

ij i ja a g Ag g Ag               (2.12.12) 

 
Taking the material time derivative, and again using Eqns. 2.11.11, 2.11.13, 
 

 T

ij i j

i j i j i j

i j

a




  

  

g ag

g ag g ag g ag

g a al l a g


  



,          

 
T T

T

ij i j

i j i j i j

i j

a




   

  

g ag

l g ag g ag g al g

g a la al g





         (2.12.13) 

 
The convected derivatives are thus 
 

T

T

i j
ij

ij
i j

a

a

   

   

g g a al l a

g g a la al




              (2.12.14) 

 
As will be seen below, these quantities are Lie derivatives of the tensor a. 
 
The time derivative of the components can be expressed in an alternative way, by expressing 
the spatial base vectors , i

ig g  in terms of the material base vectors , i
iG G ; using Eqns. 

2.10.23: 
 

T

ij i j

i i

i i

a












g ag

FG aFG

G F aFG



,          T T

1 T

ij i j

i j

i j

a



 


 







g ag

F G aF G

G F aF G



             (2.12.15) 

 
So, as an alternative to Eqns. 2.12.14, 
 

T

1 T

i j
ij

ij
i j

a

a




 

 

 

G G F aF

G G F aF




                                 (2.12.16) 

 
As will be seen next, the quantities on the right are the material time derivatives of the pull-
back of the tensor a. 
 
Example 
 
Considering again Example 1 which was worked through in detail in §2.10, suppose we have 
a shearing deformation as shown in Fig. 2.12.1 (this is Fig. 2.10.3). 
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Figure 2.12.1: A pure shear deformation of one parallelogram into another 
 
Let the shear angle   in Fig. 2.12.1 evolve over time according to  
 

t                                                            (2.12.17) 
 

From Eqns. 2.10.7, 2.10.11, the rates of change of the base vectors are 
 

   

   

1 1 2 1 2 12

1 2
1 2 2 22

1
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tan sin

1
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tan sin
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d d d d
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
   

 
         

 
         

g e g e e e

g e e e g e

    (2.12.18) 

 
The velocity gradient is, from Eqn. 2.11.5, 
 

 

1 2
1 2

1 22sin

0 1

0 0 i




   

  

 
   

 

l g g g g

e e

e

 



                                              (2.12.19) 

 
where   is given by Eqn. 2.10.26, and 
 

       2

1 1

tan tan sin

d
t

dt t t


    

 
        
                    (2.12.20) 
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Considering again the vector V of Eqn. 2.10.44,  T

x y iV V   V E , and its corresponding 

deformed vector v of Eqn. 2.10.47,  x y y iV V V    v e , 

 

 
0

y
i

V 
   

 
v e ,                                             (2.12.21) 

 
The contravariant and covariant components of v  are 
 

, , , 1
0

tan

y
yi i i

i i i
y

V
V

v v v v
V



 
               

v g v g
                          (2.12.22) 

 
The “hat” on the v


  is to emphasise that (see Eqns. 2.12.5)  

 

,i i i i
i i i i

v v v v


        v g v g v gv g
 
                              (2.12.23) 

 
 From Eqns. 2.12.6, the convected derivatives are  
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v l v 


  (2.12.23) 

 
Thus 0 v lv , which, from Eqn. 2.12.6, implies that 0iv  . This is the expected result: the 

contravariant components do not change over time. They are always / tanx y yV V V   , as 

given by Eqn. 2.10.47b. 
  
Consider now an example tensor 
 

 xx xy

i
yx yy

A A

A A

 
  
 

A E                                          (2.12.24) 

 
The covariant and contravariant components are 
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A G

            (2.12.25) 

 
This deforms to (with F given by Eqn. 2.10.25) 
 

 
1

0 1
xx xy xx yx xy yy

i
yx yy yx yy

A A A A A A

A A A A

       
     
     

a e                 (2.12.25) 

 
Now 
 

  
 i mn

i m n

ij
i j

A

A

  

 

FA g G G G

g G
                                      (2.12.26) 

 
Converting between the various convected base vectors using Eqns. 2.10.7-8, 2.10.11-12, the 
contravariant and covariant and components are ,ij i j

i j ija a   a g g a g g : 

 

 

     2

1 1 1 1 1

tan tan tan tan tan

1

tan

1

tan

1 1 1 1

tan tan tan tan

xx xy yx yy xy yy
ij

yx yy yy

xx yx xy yy xx yx

ij

yx xx yx yy yx xy yy xx yx

A A A A A A

a

A A A

A A A A A A

a

A A A A A A A A A

    





   

     
 
  
 
        
 
           
 

     

(2.12.27) 
 
Also, 
 

 
0 0
yx yy

i

A A 
   

 
a e ,                                       (2.12.28) 

 
and the contravariant and covariant components are 
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1

tan,

0 0

1

tan
,

1 1 1

tan tan tan

yx yy yyij ij
i j

yx yx yy

i j
ij ij

yx yx yy

A A A
a a

A A A

a a

A A A





  

       
  
  
    
  

  
  

a g g

a g g

    

    

             (2.12.29) 

 
Again, the “hat” emphasises that (see Eqns. 2.12.13)  
 

,ij i j ij i j
ij i j ij i ja a a a

 

     g ag g ag g ag g ag
 

                          (2.12.30) 

 
Now 
 

T

T

0

0
xy yy

yy

yx xx yx yy

xx yx xy yx yy

A A

A

A A A A

A A A A A

   
      

   
          

a la al

a al l a




                         (2.12.31) 

 
Thus T 0  a la al , i.e. 0ija  , only when 0xy yyA A  , which is consistent with Eqn. 

2.12.27a (only constant terms, independent of   remain in that case). 
 
 
2.12.2 Push-Forward and Pull-Back 
 
Next are defined the push-forward and pull-back of vectors and tensors, which will lead into 
the concept of Lie derivatives, which relate back to what was just discussed above regarding 
convected derivatives. 
 
Vectors 
 
Consider a vector V given in terms of the reference configuration base vectors: 
 

 
 

j i
i

i j
i

V

V

 

 

V G

G
       (2.12.32) 

 
The push-forward, symbolised by  *  , is defined to be the vector with the same 

components, but with respect to the current configuration base vectors. There are 2 push-
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forward operations, depending on the type of components used; the symbol b  is used for 
covariant components iV  and the symbol # for contravariant components iV ; using 2.10.23, 

 

 
 

T T
*

#

*

b i i
i i

i i
i i

V V

V V





   

  

V g F G F V

V g FG FV
   Push-forward of Vector     (2.12.33) 

 
Eqn. 2.12.33b says that the push forward of the contravariant form of V is simply FV. In 
other words, the push forward here is the actual corresponding vector in the deformed 

configuration,  i j
iv  v FV g , and, as a consequence of the definitions, i iV v , as 

illustrated in Fig. 2.12.2. 
 

 
 

Figure 2.12.2: The push-forward of a vector V 
 
A special case of Eqn. 2.12.33b is the push forward of a line element in the reference 
configuration, giving the corresponding line element in the current configuration: 

 

  xgX ddd i
i #

* .                                      (2.12.34) 

 
Similarly, consider a vector v given in terms of the current configuration basis: 
 

i
ii

i vv ggv        (2.12.35) 

 
The pull-back of v,  v1

*
 , is defined to be the vector with components iv  (or iv ) with 

respect to the reference configuration base vectors iG  (or iG ).  Using 2.10.23, 

 

 
  vFgFGv

vFgFGv
11#1

*

TT1
*









i
-i

i
i

i
i

i
i

b

vv

vv




  Pull-back of a vector    (2.12.36) 

 
and, for a line element in the current configuration, 

 

  XxFGx dddxd i
i   1#1

* .                                  (2.12.37) 

1
1g

2g

2

v

 #

* V

1G

2G

2

V  F V
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Note that a push-forward and pull-back applied successively to a vector with the same 
component type will result in the initial vector. 
 
From the above, for two material vectors U and V and two spatial vectors u and v, 
 

       
       bb

bb

vuvuvu

VUVUVU
1

*
#1

*
#1

*
1

*

*
#

*
#

**

 






                        (2.12.38) 

 
For example, as a special case of this, in the reference configuration, 1G  and 2G  are 

perpendicular: 2
1 0 G G . Pushing forward these vectors, we get from Eqn. 2.12.33: 

1 1FG g  and T 2 2 F G g , and again    # 2 2
* 1 * 1 0

b
    G G g g . 

 
 
Tensors 
 
Consider a material tensor A: 
 

j
ij

i
j

i
i
jji

ijji
ij AAAA GGGGGGGGA  

            (2.12.39) 

 
As for the vector, the push-forward of A,  A* , is defined to be the tensor with the same 
components, but with respect to the deformed base vectors.  Thus, using 2.10.23, 
 

   
   
   
   

T T T 1
*

# T
*

\ T 1
*

/ T T T
*

b i j i j
ij ij

ij ij
i j i j

i j i j
j i j i

j i j i
i j i j

A A

A A

A A

A A









   

 
 

   

    

    

    

    

A g g F G F G F AF

A g g FG FG FAF

A g g FG F G FAF

A g g F G FG F AF

  Push-forward of Tensor  (2.12.40) 

 
Similarly, consider a spatial tensor a: 
 

j
ij

i
j

i
i
jji

ijji
ij aaaa gggggggga  

           (2.12.41) 

 
The pull-back is 
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   
   
   
   

1 T T T
*

#1 1 1 1 T
*

\1 1 T 1
*

/1 T 1 T T
*

b i j i j
ij ij

ij ij -
i j i j

i j i j
j i j i

j i j i -
i j i j

a a

a a

a a

a a











   

  
 

   

    

    

    

    

a G G F g F g F aF

a G G F g F g F aF

a G G F g F g F aF

a G G F g F g F aF

     Pull-back of Tensor     (2.12.42) 

 
The first of these, TF aF , is called the covariant pull-back, whereas the second, 1 T F aF , is 
called the contravariant pull-back. 
 
Since F maps material vectors to spatial vectors, a maps spatial vectors to spatial vectors, and 

TF  maps spatial vectors to material vectors, it follows that the pull-back TF aF maps material 
vectors to material vectors, and so is a material tensor field, and similarly for the other three 
pull-backs.  
 
Time Derivatives 
 
It will be recognised that the expressions for the pull backs of a spatial covariant tensor and 
spatial contravariant tensor in Eqns. 2.12.42a,b are those appearing in Eqns. 2.12.16. Keeping 
in mind Eqn. 2.12.14, one sees that, for a spatial tensor in terms of covariant components, 

i j
ija a g g , and contravariant components, ij

i ja a g g , 

 

T T

1 T T

i j i j
ij

ij
i j i j

a

a




 

 
       

 
 

       
 

g g F aF g g a al l a

g g F aF g g a la al





                            (2.12.43) 

 
 
Other Push-Forward and Pull-Back relations for Vectors and Tensors 
 
Here follow some relations involving the push-forward and pull-backs of tensors. 
 
For two material tensors A and B and two spatial tensors a and b, the scalar product is 
 

i
j

j
i

j
i

i
jij

ijij
ij

i
j

j
i

j
i

i
jij

ijij
ij

babababa

BABABABA















ba

BA

:

:
                         (2.12.44) 

 
This scalar product then push-forwards and pull-backs as {▲Problem 1} 
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       
       
       
       /1
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*
\1

*
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1
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/
*

\
*

\
*

/
*

*
#

*
#
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::

:::

::

:::

baba

bababa

BABA

BABABA





















bb

bb

                        (2.12.45) 

 
For material tensor A and material vectors VU, , and spatial tensor a and spatial vectors 

vu, , 
 

j
j

i
iji

ji
j

ij
i

j
ij

i

j
j

i
iji

ji
j

ij
i

j
ij

i

vauvauvauvau

VAUVAUVAUVAU











uav

UAV
                        (2.12.46) 

 
Then 
 

           
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*
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*
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*
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*
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*
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#
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



















               (2.12.47) 

 
For material tensor A and material vector V, and spatial tensor a and spatial vector v, the 
contractions AV  and av  are 
 

j
ijji

jj
j

i
j

ij

j
ijji

jj
j

i
j

ij

vavavava

VAVAVAVA











av

AV
                              (2.12.48) 

 
and so transform as  
 

         
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*
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
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


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b
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b
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                     (2.12.49) 

 
Finally, for material tensors A, B and spatial tensors a, b,  
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  (2.12.50) 
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and so  
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bb

b

bbb

b

                      (2.12.51) 

 
 
Push-Forward and Pull-Back operations for Strain Tensors 
 
The push-forward of the covariant right Cauchy-Green strain and its contravariant inverse are 

 
 

    T1#1
*

1T
*

FCFggC

CFFggC








ji

ij

ji
ij

b

C

C




.                                    (2.12.52) 

 
From 2.10.39, ijij gC  , the covariant components of the identity tensor expressed in terms 

of the convected base vectors in the current configuration, i.e. the spatial metric tensor, 
ii

ijg ggg  , and   ijij
gC 1 , the contravariant components of g. Thus the push-forward 

of covariant C is g and the pull-back of covariant g is C, and the push-forward of 
contravariant 1C  is g and the pull-back of contravariant g is 1C : 
 

   
    1#1

*

#1
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1
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,

,




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 bb

                                  (2.12.53) 

Push-forward of the right Cauchy-Green strain  
 
Similarly, the pull-back of covariant 1b  is G and the push-forward of covariant G is 1b , 
and the pull-back of contravariant b is G and the push-forward of contravariant G is b. 
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bb

                                   (2.12.54) 

Pull-back of the left Cauchy-Green strain  
 
For the covariant form of the Green-Lagrange strain, the push-forward is 

 

  1T
*

 EFFggE ji
ij

b E .                                (2.12.55) 

 
From 2.10.43, ijij eE  , the covariant components of the Euler-Almansi strain tensor, and so 

the push-forward of covariant E is e and the pull-back of covariant e is E. 
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    EeeE   bb 1
** ,  .                                    (2.12.56) 

Push-forward of the Green-Lagrange strain 
Pull-back of the Euler-Almansi strain 

 
 
Push-Forward and Pull-Back with Polar Decomposition Intermediate 
Configurations 
 
Pull backs and push-forwards can be defined relative to any two configurations.  Consider 
the polar decomposition and the intermediate configurations discussed in §2.10 (see Fig. 
2.10.11).  Effectively, we are replacing F with R: pushing forward a material tensor A from 

the reference configuration  iG  to the configuration  iĜ  leads to 
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Note that the result is the same regardless of whether one is using the covariant, contravariant 
or mixed forms. 
 

Similarly, the pull back of a tensor Â  from the intermediate configuration  iĜ  to the 

reference configuration  iG  is 
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                                   (2.12.58) 

 
The push-forward of a tensor â  from  iĝ  to  g  and the corresponding pull-back of a 

spatial tensor a is 
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The push-forwards and pull-backs due to the stretch tensors are 
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and 
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     (2.12.62) 

 
Push-forwards and pull-backs can also be defined using TF  (in the place of F) and these 

move between the intermediate configurations, gG ˆˆ  . 
 
Recall Eqn. 2.10.64, which state that the covariant components of 11 ,,,  vUvU  with respect 

to the bases iiii ggGG ,ˆ,ˆ,  respectively, are equal.  This can be explained also in terms of 

push-forwards and pull-backs.  For example, with TRURv   and T11 RRUv   , one can 
write (in fact these relations are valid for all component types) 
 

       gRGR UvUv ˆ
1

*
1

* ,                                 (2.12.63) 

 
The first of these shows that the components of U with respect to G  are the same as those of 

v with respect to Ĝ  (for all component types).  The second shows that the components of 
1U  with respect to ĝ  are the same as those of 1v  with respect to g. 

 
As another example, with 2UC  , 
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        gUgU gCgC ˆ
#1

*
1

ˆ
1

* ˆ,ˆ    b                              (2.12.64) 
 
 
2.12.3 The Lie Time Derivative 
 
The Lie (time) derivative is a concept of tensor analysis which is used to distinguish 
between the change in some quantity, and the change in that quantity excluding changes due 
to the motion/configuration changes. As mentioned in the introduction to this section, we can 
imagine a hypothetical observer attached to the deforming material, who moves and deforms 
with the material. This observer will see no change in the configuration itself, 0i

i  g g  . 

However, they will still see changes to vectors and tensors. These changes are measured 
using the Lie Derivative, which will be seen to be none other than the convected derivative 
discussed above. 
 
 
Vectors 
 
First, the Lie (time) derivative Lvv  of a vector v is the material derivative holding the 

deformed basis constant, that is, Eqns. 2.12.3: 
 

#
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v

v





v g

v g




                                                       (2.12.65) 

 
Formally, it is defined in terms of the pull-back and push-forward, 
 

 1
* *Lv

d

dt
        

v v        The Lie Time Derivative     (2.12.66) 

 
This is illustrated in the Fig. 2.12.3.  The spatial vector is first pulled back to the reference 
configuration, there the differentiation is carried out, where the base vectors are constant, 
then the vector is pushed forward again to the spatial description. 
 

 
 

Figure 2.12.3: The Lie Derivative 
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For covariant components, one first pulls back the vector i

iv g  to i
iv G , the derivative is taken, 

i
iv G , and then it is pushed forward to i

iv g , which is consistent with the definition 2.12.65a.  

The definition 2.12.51 allows one to calculate the Lie derivative in absolute notation: using 
2.12.36a, 2.12.33a, 2.11.9, 
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      (2.12.67) 

 
The Lie derivative for the contravariant components can be calculated in a similar way, and 
in summary (these are simply Eqns. 2.12.6): {▲Problem 2} 
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     Lie Derivatives of Vectors       (2.12.68) 

 
Tensors 
 
The material time derivative of a spatial tensor a is  
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                            (2.12.69) 

 
The Lie (time) derivative avL  is then 
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                                               (2.12.70) 

 
For example, for covariant components, one first pulls back the tensor ji

ija gg   to 
ji

ija GG  , the derivative is taken, ji
ija GG  , and then it is pushed forward to ji

ija gg  .  

Thus, using 2.12.42a, 2.12.42a, 2.11.9,  
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      (2.12.71) 

 
The Lie derivative for the other components can be calculated in a similar way, and in 
summary (these are Eqns. 2.12.14): {▲Problem 3} 
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     Lie Derivatives of Tensors       (2.12.72) 

 
The first of these, T a l a al , is called the Cotter-Rivlin rate. The second of these, 

T a la al , is also called the Oldroyd rate. 
 
Lie Derivatives of Strain Tensors 
 
From 2.5.18,  
 

0bllbb

eleled


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T

T




                                                 (2.12.73) 

 
and so the Lie derivative of the covariant form of the Euler-Almansi strain is the rate of 
deformation and the Lie derivative of the contravariant form of the left Cauchy-Green tensor 
is zero.  Further, from 2.12.53a, the Lie derivative of the metric tensor is the push forward of 
the material time derivative of the right Cauchy-Green strain: 

 

 bb
v Cg 

*L  ,                                                    (2.12.74) 

 
Also, directly from 2.11.15, 

 
L 2b

v g d                                                          (2.12.75) 

 
 
Corotational Rates 
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The Lie derivatives in 2.12.72 were derived using pull-backs and push-forwards between the 
reference configuration and the current configuration. If, instead, we relate quantities to the 
rotated intermediate configuration, in other words use R instead of F in the calculations, we 
find that, using Eqn. 2.6.1, T T  RΩ RR RR  , 
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* *

T T
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d

dt

d
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  R R

a a

R R aR R

a Ω a aΩ

                        (2.12.76) 

 
This is called the Green-Naghdi rate. 
 
Rather than pulling back from the intermediate configuration to the reference configuration, 
we can choose the current configuration to be the reference configuration. Rotating from this 
configuration (see section 2.6.3), RΩ w , the spin tensor, and one obtains the Jaumann 

rate,  a wa aw . 
 
 
Lie Derivatives and Objective Rates 
 
The concept of objectivity was discussed in section 2.8.  Essentially, if two observers are 
rotating relative to each other with rotation  tQ  and both are observing some spatial tensor,  

T as measured by one observer and *T  as measured by the other, then this tensor is objective 
provided * TT QTQ  for all Q, i.e. the measurement of the deformation would be 
independent of the observer. One of the most important uses of the Lie derivative is that Lie 
derivatives of objective spatial tensors are objective spatial tensors.  Thus the rates given in 
2.12.72 are all objective. 
 
For example, suppose we have an objective spatial tensor a, i.e. so that * Ta QaQ . The 

velocity gradient is not objective, and instead satisfies the relation 2.8.27: * T T l QlQ QQ .  

Using the properties of the transpose, the orthogonality of Q, and the identity T T QQ QQ  , 
one has for Eqns. 2.12.72a,b, 
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            (2.12.77) 

 
showing that these rates are indeed objective. 
 
Further, any linear combination of them is objective, for example, 
 

          awwaallaallaallaaalala   TTTT

2

1

2

1
     (2.12.78) 

 
is objective, provided a is.  This is the Jaumann rate introduced in Eqn. 2.8.36 and 
mentioned after Eqn. 2.12.76 above.  Further, as mentioned after Eqn. 2.12.72, the Cotter-
Rivlin rate of Eqn. 2.8.37 is equivalent to Lb

va . 

 
The Lie Derivative and the Directional Derivative 
 
Recall that the material time derivative of a tensor can be written in terms of the directional 
derivative, §2.6.5.  Hence the Lie derivative can also be expressed as 
 

    vTT f
1

**L  v                    (2.12.79) 

 
and hence the subscript v on the L.  Thus one can say that the Lie derivative is the push 
forward of the directional derivative of the material field  T1

*
  in the direction of the 

velocity vector. 
 
 
2.12.4 Problems 
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1. Eqns. 2.12.30 follow immediately from 2.12.29.  However, use Eqns. 2.12.40, 2.12.42, 

i.e.   1T
*

 AFFA b , etc., directly, to verify relations 2.12.45. 
2. Derive the Lie derivatives of a vector v, Eqns. 2.12.68. 
3. Derive the Lie derivatives of a tensor a, Eqns. 2.12.72. 
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2.13 Variation and Linearisation of Kinematic Tensors 
 
 
2.13.1 The Variation of Kinematic Tensors 
 
The Variation 
 
In this section is reviewed the concept of the variation, introduced in Part I, §8.5. 
 
The variation is defined as follows:  consider a function )(xu , with )(xu*  a second function 
which is at most infinitesimally different from )(xu  at every point x, Fig. 2.13.1 
 

 
 

Figure 2.13.1: the variation 
 
Then define 

 
)()( xuxuu  *  The Variation                        (2.13.1) 

 
The operator   is called the variation symbol and u  is called the variation of )(xu . 
 
The variation of )(xu  is understood to represent an infinitesimal change in the function at x.  
Note from the figure that a variation u  of a function u is different to a differential ud .  The 
ordinary differentiation gives a measure of the change of a function resulting from a specified 
change in the independent variable (in this case x).  Also, note that the independent variable 
does not participate in the variation process; the variation operator imparts an infinitesimal 
change to the function u at some fixed x – formally, one can write this as 0x . 
 
The Commutative Properties of the variation operator 
 

(1) 
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u
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d           (2.13.2) 
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Proof: 
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Proof: 
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Variation of a Function 
 
Consider A, a scalar-, vector-, or tensor-valued function of u ,  A u .  When we apply a 

variation to u, u , A changes to  A u u .  The variation of A is then defined as 

 
( , ) ( ) ( )    A u u A u u A u        (2.13.4) 

 
(in the limit as 0 u ).  This can be expressed using the concept of the directional 
derivative in the usual way (see §1.6.11): consider the function  A u u , so that 

   0



 A u u A u  and    1

 


  A u u A u u .  A Taylor expansion gives 

      0
0 /d d


  


  A A A  , or 

 

     
0

d

d 

  
 

      
 

A u u A u A u u                       (2.13.5) 

    
Setting 1   then gives Eqn. 2.13.4; thus 
 

][)()( uAuAuuA u                   (2.13.6) 

 
where [ ]uA u  is the directional derivative of A in the direction u ; the directional 

derivative in this context is the variation of A: 
 

   uuAuAuuA u 




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0

][,
d

d
          (2.13.7) 
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For example, consider the scalar function EP : , where P and E are second order tensors.  
Then 
 

    EPEEPEEE E 





::][,
0


d

d
                    (2.13.8) 

 
The second variation is defined as  
 

   uuAuAAA u 






0

2 ][
d

d
                     (2.13.9) 

 
For example, for a scalar function  u  of a vector u, the chain rule and Eqn. 2.13.2 give 
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         (2.13.10) 

 
 
Variation of Functions of the Displacement 
 
In what follows is discussed the change (variation) in functions )(uA  when the displacement 
(or velocity) fields undergo a variation.  These ideas are useful in formulating variational 
principles of mechanics (see, for example, §3.9). 
 
Shown in Fig. 2.13.2 is the current configuration frozen at some instant in time.  The 
displacement field is then allowed to undergo a variation u .  This change to the 
displacement field evidently changes kinematic tensors, and these changes are now 
investigated.  Note that this variation to the displacement induces a variation to x, x , but X 
remains unchanged, 0X . 
 

 
 

Figure 2.13.2: a variation of the displacement 
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To evaluate the variation of the deformation gradient F,  uuF  , , where u is the 

displacement field, note that Xxu   and Eqn. 2.2.43,   IuuF  Grad .  One has, from 
the definition 2.13.7, 
 

     

   
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uF u u F u F u u

F u u I
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                   (2.13.11) 

 
Noting the first commutative property of the variation, 2.13.2, this can also be expressed as 
 

   , Grad  F u u u             (2.13.12) 

 
Note that u  is completely independent of the function u. 
 
Here are some other examples, involving the inverse deformation gradient, the Green-
Lagrange strain, the inverse right Cauchy-Green strain and the spatial line element:  
{▲Problem 1-3} 
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         (2.13.13) 

 
where ε  is the small strain tensor, Eqn. 2.2.48. 
 
One also has, using the chain rule for the directional derivative, Eqn. 1.15.28, the directional 
derivative for the determinant, Eqn. 1.15.32, the trace relation 1.10.10e, Eqn. 2.2.8b,  
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Example 
 
To put some of the above concepts into a simple and less abstract setting, consider the 
following scenario: a bar over 0 1 X  is extended, as illustrated in Fig. 2.13.3, according 
to: 
 

 

2

1
2

2 3

3

 

 

x X

X x
           (2.13.15) 

 
The deformation gradient is 
 

Grad 4 F x X            (2.13.16) 
 
So, for example, in the initial configuration (A), an infinitesimal line element at 0X  does 
not stretch ( 0F ) whereas a line element at 1X  stretches by 4. 
 
The inverse deformation gradient is 
 

 
1 1

grad
8 3

  


F X
x

                           (2.13.17) 

 
This implies that, in the current configuration (B), an infinitesimal line element at 3x  is the 
same size as its counterpart in the initial configuration ( 1 0 F ) whereas a line element at 

5x  shrinks by a factor of 4 when returning to the initial configuration 
 

 
 

Figure 2.13.3: a motion and a variation 
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Now introduce a variation, which moves the bar from configuration B to configuration C: 
 

 22 3    u x X                               (2.13.18) 

 
The point at 3 moves to 3 3  and the point at 5 moves to 5 5 .  (This variation happens 
to be a simple linear function of x, but it can be anything for our purposes here.) 
 
The variation is plotted below as a function of X and x. 
 

 
 

Figure 2.13.4: the variation as a function of x and X 
 
Differentiating Eqns. 2.13.19, the gradients of the variations are 

 
   
 

Grad 4

grad

 

 





u X

u
                                             (2.13.20) 

 
which are the slopes in Figure 2.13.4. 
 
To calculate the F associated with the new variation configuration, i.e.  F u u , note that 

points X have now moved to: 
 

 2 22 3 2 3  X X                (2.13.21) 

 
and so 
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     2Grad 1 2 3 4 4       F u u X X X                     (2.13.22) 

 
This says that an infinitesimal line element at 0X  does not stretch when moving to 
configuration C ( 0F ) whereas a line element at 1X  stretches by 4 4 . 
 
Subtracting Eqn. 2.13.17 form Eqn. 2.13.22: 
 

     4     F F u u F u X                                 (2.13.23) 

 
From Eqn. 2.13.20, this verifies Eqn. 2.13.11, that 
 

 Grad F u                                            (2.13.24) 

 
We could also calculate the variation of F by moving directly from configuration B to 
configuration C. The movement of the particles from B to C is given by Eqn. 2.13.19: 

 22 3 X  and so, based on this motion,     2Grad 2 3 4    F X X . 

 
To calculate the 1F  associated with the new variation configuration, i.e.  1  F u u , note 

that the “new” current position x is (Eqn. 2.13.21): 
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                                   (2.13.25) 

 
This means that the point 3 3  in configuration C corresponds to 0X  and the point 
5 5  corresponds to 1X . Then, 
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x
F u u

x
               (2.13.26) 

 
So an element at the point 3 3  in configuration C does not change in size as it is mapped 
back to the initial configuration, whereas an element at the point 5 5  shrinks back to the 
initial configuration by a factor of  1 / 4 4 , as indicated in Fig. 2.13.3.  

 
Alternatively, since C  x x x , this can be written as 
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Subtracting Eqn. 2.13.18 from Eqn. 2.13.27, the variation of the inverse deformation gradient 
is then 
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         (2.13.28) 

 

Using a series expansion,   1 21 1      , for small   (neglecting terms of order 
2 ), 

 

 
 

1 1

8 3
   


F u

x
                                 (2.13.29) 

 
From Eqns. 2.13.18 and 2.13.20, this verifies the relation 2.13.13: 
 

   1 1grad δu   F u F                                   (2.13.30) 

 
A formula for the inverse deformation gradient is 1 grad  F I u . However, note that 

 1 /     F u u I u x , but that  1 / C     F u u I u x . 

 
 
The Lie Variation 
 
The Lie-variation is defined for spatial vectors and tensors as a variation holding the 
deformed basis constant.  For example, 
 

ji
ija gga   b

L                              (2.13.31) 

 
The object is first pulled-back, the variation is then taken and finally a push-forward is 
carried out.  For example, analogous to 2.12.66, 
 

      uauua u  1
**L ,                 (2.13.32) 

 
For example, consider the Lie-variation of the Euler-Almansi strain e.  First, from 2.12.56b, 

  Ee 
b*

1 .  Then 2.13.13b gives     εFFEueu  T*
1  

b .  From 2.12.40a, 
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1*L ,                      (2.13.33) 
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2.13.2 Linearisation of Kinematic Functions 
 
Linearisation of a Function 
 
As for the variation, consider A, a scalar-, vector-, or tensor-valued function of u .  If u 
undergoes an increment u , then, analogous to 2.13.4,  
 

    ][ uAuAuuA u              (1.13.34) 

 
The directional derivative ][ uAu   in this context is also denoted by  uuA  , .  The 

linearization of A with respect to u is defined to be 
 

     uuAuAuuA  ,,L           (1.13.35) 
 
Using exactly the same method of calculation as was used for the variations above, the 
linearization of F and E, for example, are  
 

     
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u
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T,L

Grad,L
        (2.13.36) 

 

where     uuε  gradgrad T
2
1  is the linearised small strain tensor ε . 

 
Linearisation of Variations of a Function 
 
One can also linearise the variation of a function.  For example, 
 

     uuAuuAuuA  ,,,L                                (2.13.37) 
 
The second term here is the directional derivative 
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This leads to an expression similar to A2 .  For example, for a scalar function  u  of a 
vector u, 
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Consider now the virtual Green-Lagrange strain, 2.13.11b, εFFE  T .  To carry out the 
linearization of E , it is convenient to first write it in the form 
 

  
  uFFu

FuuF

εFFE







GradGrad

gradgrad
TT

2
1
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1

T







        (2.13.40) 

 
Then 
 

      uuFFuuEE uu   GradGrad TT
2
1         (2.13.41) 

 
Recall that the variation u  is independent of u; this equation is being linearised with respect 
to u, and u  is unaffected by the linearization (see Fig. 2.13.3 below).  However, the motion, 
and in particular F, are affected by the increment in u.  Thus {▲Problem 4} 
 

  uuE  GradGradsym T           (2.13.42) 
 

 
 

Figure 2.13.3: linearisation 
 
As with the variational operator, one can define the linearization of a spatial tensor as 
involving a pull back, followed by the directional derivative, and finally the push forward 
operation.  Thus 
 

      uauua u  1
**,               (2.13.43) 

 
 
 
 
 
2.13.3 Problems 
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1. Use Eqn. 2.2.22,  IFFE  T
2
1 , Eqn. 2.13.11,    uuuF  Grad,  , and Eqn. 2.2.8b, 

  1Gradgrad  Fvv , to show that εFFE  T , where ε  is the small strain tensor, Eqn. 
2.2.48. 

2. Use 2.13.11 to show that the variation of the inverse deformation gradient 1F  is 
uFF  grad11   .  [Hint: differente the relation IFF 1  by the product rule and then 

use the relation   1Gradgrad  Fvv  for vector v.] 

3. Use the definition FFC T  to show that T11 2   εFFC . 
4. Use the relation  AAA  T

2
1sym  to show that  

       uuuuFFuE u  GradGradsymGradGrad TTT

2
1   

5. Use   uuεe  gradgrad T
2
1   to show that the  
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