2 Kinematics

Kinematics is concerned with expressing in mathematical form the deformation and motion of
materials. In what follows, a number of important quantities, mainly vectors and second-
order tensors, are introduced. Each of these quantities, for example the velocity, deformation
gradient or rate of deformation tensor, allows one to describe a particular aspect of a
deforming material.

No consideration is given to what is causing the deformation and movement — the cause is the
action of forces on the material, and these will be discussed in the next chapter.

The first section introduces the material and spatial coordinates and descriptions. The second
and third sections discuss the strain tensors. The fourth, fifth and sixth sections deal with
rates of deformation and rates of change of kinematic quantities. The theory is specialised to
small strain deformations in section 7. The notion of objectivity and the related topic of rigid
rotations are discussed in sections 8 and 9. The final sections, 10-13, deal with kinematics
using the convected coordinate system, and include the important notions of push-forward,
pull-back and the Lie time derivative.
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Section 2.1

2.1 Motion

2.1.1 The Material Body and Motion

Physical materials in the real world are modeled using an abstract mathematical entity
called a body. This body consists of an infinite number of material particles'. Shown in
Fig. 2.1.1a is a body B with material particle P. One distinguishes between this body and
the space in which it resides and through which it travels. Shown in Fig. 2.1.1bis a
certain point x in Euclidean point space E.

RN
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Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (¢) a configuration
of the body

By fixing the material particles of the body to points in space, one has a configuration of
the body ¥, Fig. 2.1.1c. A configuration can be expressed as a mapping of the particles

P to the point x,
x=%(P) Q.1.1)
A motion of the body is a family of configurations parameterised by time t,

x=7%(P.t) (2.1.2)

At any time t, Eqn. 2.1.2 gives the location in space x of the material particle P, Fig.
2.1.2.

I these particles are not the discrete mass particles of Newtonian mechanics, rather they are very small
portions of continuous matter; the meaning of particle is made precise in the definitions which follow
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Figure 2.1.2: a motion of material

The Reference and Current Configurations

Choose now some reference configuration, Fig. 2.1.3. The motion can then be
measured relative to this configuration. The reference configuration might be the
configuration occupied by the material at time t = 0, in which case it is often called the
initial configuration. For a solid, it might be natural to choose a configuration for which
the material is stress-free, in which case it is often called the undeformed configuration.
However, the choice of reference configuration is completely arbitrary.

Introduce a Cartesian coordinate system with base vectors E; for the reference
configuration. A material particle P in the reference configuration can then be assigned a
unique position vector X = X,E, relative to the origin of the axes. The coordinates
(X,,X,,X,) of the particle are called material coordinates (or Lagrangian coordinates
or referential coordinates).

Some time later, say at time t, the material occupies a different configuration, which will
be called the current configuration (or deformed configuration). Introduce a second
Cartesian coordinate system with base vectors e; for the current configuration, Fig. 2.1.3.

In the current configuration, the same particle P now occupies the location x, which can
now also be assigned a position vector x = X;e,. The coordinates (X,,X,, X ) are called

spatial coordinates (or Eulerian coordinates).

Each particle thus has two sets of coordinates associated with it. The particle’s material
coordinates stay with it throughout its motion. The particle’s spatial coordinates change
as it moves.

The coordinate systems do not have to be Cartesian. For example, suppose one has a
rectangular block which deforms into a curved beam (part of a circle). In that case it
would be sensible to employ a rectangular Cartesian coordinate system with coordinates
(X,,X,,X;) to describe the reference configuration, and a polar coordinate system

(r,6,2) to describe the current configuration.
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reference
configuration current
X configuration

Figure 2.1.3: reference and current configurations

In practice, the material and spatial axes are usually taken to be coincident so that the base
vectors E; and e, are the same, as in Fig. 2.1.4. Nevertheless, the use of different base

vectors E and e for the reference and current configurations is useful even when the
material and spatial axes are coincident, since it helps distinguish between quantities
associated with the reference configuration and those associated with the spatial
configuration (see later).

Figure 2.1.4: reference and current configurations with coincident axes

In terms of the position vectors, the motion 2.1.2 can be expressed as a relationship
between the material and spatial coordinates,

‘X =X, 1), X = 7,(X,, X5, X, ,t)| Material description (2.1.3)

or the inverse relation

X =y5"(x,1), X, =z (Xl, X2,X3,t) Spatial description (2.1.4)

If one knows the material coordinates of a particle then its position in the current
configuration can be determined from 2.1.3. Alternatively, if one focuses on some
location in space, in the current configuration, then the material particle occupying that
position can be determined from 2.1.4. This is illustrated in the following example.
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Example (Extension of a Bar)
Consider the motion

X, =3Xt+ X, +t, X,=X,, X;=X, (2.1.5)
These equations are of the form 2.1.3 and say that “the particle that was originally at

position X is now, at time t, at position x”. They represent a simple translation and
uniaxial extension of material as shown in Fig. 2.1.5. Note that X=x at t =0.

configuration at configurations at

t=0 t>0

Figure 2.1.5: translation and extension of material

Relations of the form 2.1.4 can be obtained by inverting 2.1.5:

1

T3t

These equations say that “the particle that is now, at time t, at position x was originally at
position X”.
[

Convected Coordinates

The material and spatial coordinate systems used here are fixed Cartesian systems. An
alternative method of describing a motion is to attach the material coordinate system to
the material and let it deform with the material. The motion is then described by defining
how this coordinate system changes. This is the convected coordinate system. In
general, the axes of a convected system will not remain mutually orthogonal and a
curvilinear system is required. Convected coordinates will be examined in §2.10.

2.1.2 The Material and Spatial Descriptions

Any physical property (such as density, temperature, etc.) or kinematic property (such as
displacement or velocity) of a body can be described in terms of either the material
coordinates X or the spatial coordinates x, since they can be transformed into each other
using 2.1.3-4. A material (or Lagrangian) description of events is one where the
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material coordinates are the independent variables. A spatial (or Eulerian) description of
events is one where the spatial coordinates are used.

Example (Temperature of a Body)

Suppose the temperature 6 of a body is, in material coordinates,
o(X,t)=3X, - X, (2.1.6)

but, in the spatial description,
Xl
9(x,t)=T—1—x3. (2.1.7)

According to the material description 2.1.6, the temperature is different for different
particles, but the temperature of each particle remains constant over time. The spatial
description 2.1.7 describes the time-dependent temperature at a specific location in space,
x, Fig. 2.1.6. Different material particles are flowing through this location over time.

motion of individual
material particles

Figure 2.1.6: particles flowing through space
[

In the material description, then, attention is focused on specific material. The piece of
matter under consideration may change shape, density, velocity, and so on, but it is
always the same piece of material. On the other hand, in the spatial description, attention
is focused on a fixed location in space. Material may pass through this location during
the motion, so different material is under consideration at different times.

The spatial description is the one most often used in Fluid Mechanics since there is no
natural reference configuration of the material as it is continuously moving. However,
both the material and spatial descriptions are used in Solid Mechanics, where the
reference configuration is usually the stress-free configuration.

2.1.3 Small Perturbations

A large number of important problems involve materials which deform only by a
relatively small amount. An example would be the steel structural columns in a building
under modest loading. In this type of problem there is virtually no distinction to be made
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between the two viewpoints taken above and the analysis is simplified greatly (see later,
on Small Strain Theory, §2.7).

2.14 Problems

1. The density of a material is given by p =3X, + X, and the motion is given by the

equations X, =X, X, =X, —t, X; =X, -t.

(a) what kind of description is this for the density, and what kind of description is
this for the motion?

(b) re-write the density in terms of x — what is the name given to this description of
the density?

(c) is the density of any given material particle changing with time?

(d) invert the motion equations so that X is the independent variable — what is the
name given to this description of the motion?

(e) draw the line element joining the origin to (1,1,0) and sketch the position of this
element of material at times t =1 and t =2.
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2.2 Deformation and Strain

A number of useful ways of describing and quantifying the deformation of a material are
discussed in this section.

Attention is restricted to the reference and current configurations. No consideration is
given to the particular sequence by which the current configuration is reached from the
reference configuration and so the deformation can be considered to be independent of
time. In what follows, particles in the reference configuration will often be termed
“undeformed” and those in the current configuration “deformed”.

In a change from Chapter 1, lower case letters will now be reserved for both vector- and

tensor- functions of the spatial coordinates x, whereas upper-case letters will be reserved
for functions of material coordinates X. There will be exceptions to this, but it should be
clear from the context what is implied.

2.2.1 The Deformation Gradient

The deformation gradient F is the fundamental measure of deformation in continuum
mechanics. It is the second order tensor which maps line elements in the reference
configuration into line elements (consisting of the same material particles) in the current
configuration.

Consider a line element dX emanating from position X in the reference configuration
which becomes dx in the current configuration, Fig. 2.2.1. Then, using 2.1.3,

dx = x(X + dX)-x(X)

= (Grady )dX (@21

A capital G is used on “Grad” to emphasise that this is a gradient with respect to the
material coordinates', the material gradient, oy /0X.

F

-\

Figure 2.2.1: the Deformation Gradient acting on a line element

! one can have material gradients and spatial gradients of material or spatial fields — see later
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The motion vector-function y in 2.1.3, 2.2.1, is a function of the variable X, but it is
customary to denote this simply by x, the value of x at X, i.e. x= X(X,t), so that

OX;
F= X _ Gradx, F;=— Deformation Gradient (2.2.2)
oX oX;
with
‘dx =FdX, dx; = F,dX,;| action of F (2.2.3)

Lower case indices are used in the index notation to denote quantities associated with the
spatial basis {ei } whereas upper case indices are used for quantities associated with the

material basis {E, }.

Note that

dx = édX
oX

is a differential quantity and this expression has some error associated with it; the error
(due to terms of order (dX)’ and higher, neglected from a Taylor series) tends to zero as

the differential dX — 0. The deformation gradient (whose components are finite) thus
characterises the deformation in the neighbourhood of a point X, mapping infinitesimal
line elements dX emanating from X in the reference configuration to the infinitesimal
line elements dx emanating from x in the current configuration, Fig. 2.2.2.

before after

Figure 2.2.2: deformation of a material particle
Example
Consider the cube of material with sides of unit length illustrated by dotted lines in Fig.
2.2.3. Itis deformed into the rectangular prism illustrated (this could be achieved, for

example, by a continuous rotation and stretching motion). The material and spatial
coordinate axes are coincident. The material description of the deformation is

x =(X)=-6X,e, +%X1e2 +%X3e3

and the spatial description is

Solid Mechanics Part IIT 208 Kelly



Section 2.2

X=9"(x)=2xE, - % X,E, +3x,E,

X5, X,

’ \
E /c \
C [

X5, Xy

Figure 2.2.3: a deforming cube

Then
; 0 -6 0
F=2 _l1/2 0 0
oX |
0o 0 1/3

Once F is known, the position of any element can be determined. For example, taking a
line element dX =[da,0,0]", dx = FdX =[0,da/2,0]".

Homogeneous Deformations

A homogeneous deformation is one where the deformation gradient is uniform, i.e.
independent of the coordinates, and the associated motion is termed affine. Every part of
the material deforms as the whole does, and straight parallel lines in the reference
configuration map to straight parallel lines in the current configuration, as in the above
example. Most examples to be considered in what follows will be of homogeneous
deformations; this keeps the algebra to a minimum, but homogeneous deformation
analysis is very useful in itself since most of the basic experimental testing of materials,
e.g. the uniaxial tensile test, involve homogeneous deformations.

Rigid Body Rotations and Translations

One can add a constant vector ¢ to the motion, x = x + ¢, without changing the
deformation, Grad(x + ¢)= Gradx. Thus the deformation gradient does not take into
account rigid-body translations of bodies in space. If a body only translates as a rigid
body in space, then F =1, and x = X + ¢ (again, note that F does not tell us where in

space a particle is, only how it has deformed locally). If there is N0 motion, then not only
is F=I,but x=X.
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If the body rotates as a rigid body (with no translation), then F = R, a rotation tensor
(§1.10.8). For example, for a rotation of & about the X, axis,

sind 0 cosd
F=| 0 1 0
cosd 0 -—sind

Note that different particles of the same material body can be translating only, rotating
only, deforming only, or any combination of these.

The Inverse of the Deformation Gradient

The inverse deformation gradient F~' carries the spatial line element dx to the material
line element dX. It is defined as

oX oX
F' =——=gradX, F,]l =—2"| Inverse Deformation Gradient (2.2.4)
ox OX;
so that
dX =F "' dx, ax, = F,;l dx;| action of F™' (2.2.5)
with (see Eqn. 1.15.2)
F'F=FF' =1 Fiu F,\jlj =J; (2.2.6)
Cartesian Base Vectors
Explicitly, in terms of the material and spatial base vectors (see 1.14.3),
F- oK, - % ¢ ok,
oX, oX,
X X (2.2.7)
F'=—Q®e, =—'E, ®c¢,
OX; OX;

J

so that, for example, FdX = (x, /X, Je, ® E, (dX , E,, )= (0, /X, JdX ,e, = dx.

Because F and F~' act on vectors in one configuration to produce vectors in the other
configuration, they are termed two-point tensors. They are defined in both
configurations. This is highlighted by their having both reference and current base
vectors E and e in their Cartesian representation 2.2.7.
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Here follow some important relations which relate scalar-, vector- and second-order
tensor-valued functions in the material and spatial descriptions, the first two relating the
material and spatial gradients { A Problem 1}.

gradg = Gradg F ™'
gradv = GradVF ™ (2.2.8)
diva = GradA : F '

Here, ¢ is a scalar; V and v are the same vector, the former being a function of the

material coordinates, the material description, the latter a function of the spatial
coordinates, the spatial description. Similarly, A is a second order tensor in the material
form and a is the equivalent spatial form.

The first two of 2.2.8 relate the material gradient to the spatial gradient: the gradient of a
function is a measure of how the function changes as one moves through space; since the
material coordinates and the spatial coordinates differ, the change in a function with
respect to a unit change in the material coordinates will differ from the change in the same
function with respect to a unit change in the spatial coordinates (see also §2.2.7 below).

Example

Consider the deformation

( _X )el (—X )e2+(X1+3X2+X3)e3

X =
X =(x, +5x +%, ), + (=%, )E, + (=X, —2x, )E,

so that
0 2 -1 1 5 1
F={0 -1 0| F'=|0 -1 0
1 3 1 -1 =2 0

Consider the vector v(x) = (2x, =X, Je, + (=3XZ + X, e, + (X, + X, Je; which, in the
material description, is

V(X) = (5X, —2X, )E, +(X, +3X, + X; —3X2)E, +(X, +5X,)

The material and spatial gradients are

0 5 -2 2 -1 0
GradV=|1 3-6X, 1 | gradv=|0 -6x, 1
1 5 0 10 1

and it can be seen that
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2 -1 0 2 -1 0
GradVF'=|0 6X, 1|=|0 —6x, 1|=gradv
0 1 1 0 1

2.2.2 The Cauchy-Green Strain Tensors

The deformation gradient describes how a line element in the reference configuration
maps into a line element in the current configuration. It has been seen that the
deformation gradient gives information about deformation (change of shape) and rigid
body rotation, but does not encompass information about possible rigid body translations.
The deformation and rigid rotation will be separated shortly (see §2.2.5). To this end,
consider the following strain tensors; these tensors give direct information about the
deformation of the body. Specifically, the Left Cauchy-Green Strain and Right
Cauchy-Green Strain tensors give a measure of how the lengths of line elements and
angles between line elements (through the vector dot product) change between
configurations.

The Right Cauchy-Green Strain

Consider two line elements in the reference configuration dX, dX‘® which are mapped

into the line elements dx”, dx'® in the current configuration. Then, using 1.10.3d,

dx® - dx® = (FdX " )r (FdX )
=dX"(F"F)dX® '| action of C (2.2.9)
=dX"Cdx®

where, by definition, C is the right Cauchy-Green Strain?

OX, OX,
oX, 0X,

C=F'F, C,=F,F, = Right Cauchy-Green Strain  (2.2.10)

It is a symmetric, positive definite (which will be clear from Eqn. 2.2.17 below), tensor,
which implies that it has real positive eigenvalues (cf. §1.11.2), and this has important
consequences (see later). Explicitly in terms of the base vectors,

C= %Eu ®e, %em@)EJ :% 0% E, ®F,. (2.2.11)
oX, X, oX, 0X,

Just as the line element dX is a vector defined in and associated with the reference
configuration, C is defined in and associated with the reference configuration, acting on
vectors in the reference configuration, and so is called a material tensor.

2 “right” because F is on the right of the formula
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The inverse of C, C, is called the Piola deformation tensor.
The Left Cauchy-Green Strain

Consider now the following, using Eqn. 1.10.18c:

dX®-dXx® = (F'dx®)-(F'dx?)
=dx"(F"F')dx® | action of b (2.2.12)
=dxb'dx®

where, by definition, b is the left Cauchy-Green Strain, also known as the Finger tensor:

T aXi aXJ' .
b=FF, by =F«Fx =—— Left Cauchy-Green Strain  (2.2.13)
OX OXy

Again, this is a symmetric, positive definite tensor, only here, b is defined in the current
configuration and so is called a spatial tensor.

The inverse of b, b’!, is called the Cauchy deformation tensor.

It can be seen that the right and left Cauchy-Green tensors are related through

C =F"bF, b = FCF" (2.2.14)
Note that tensors can be material (e.g. C), two-point (e.g. F) or spatial (e.g. b). Whatever
type they are, they can always be described using material or spatial coordinates through
the motion mapping 2.1.3, that is, using the material or spatial descriptions. Thus one
distinguishes between, for example, a spatial tensor, which is an intrinsic property of a
tensor, and the spatial description of a tensor.

The Principal Scalar Invariants of the Cauchy-Green Tensors

Using 1.10.10b,
trC = tr(FF) = tr(FF" ) = trb (2.2.15)

This holds also for arbitrary powers of these tensors, trC" = trb", and therefore, from
Eqn. 1.11.17, the invariants of C and b are equal.

2.2.3 The Stretch

The stretch (or the stretch ratio) A is defined as the ratio of the length of a deformed
line element to the length of the corresponding undeformed line element:
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419 The Stretch 22.16
_|dX| e Stretc (2.2.16)

From the relations involving the Cauchy-Green Strains, letting dX = dX* = dX,
dx" = dx® =dx, and dividing across by the square of the length of dX or dx,

2 2
(M) keak, a2 =[P Zggpas
A= |dX| =dXCdX, A= =dxb ™ dx (2.2.17)

Here, the quantities dX = dX/ |dX| and dx = dx/ |dx| are unit vectors in the directions of

dX and dx. Thus, through these relations, C and b determine how much a line element
stretches (and, from 2.2.17, C and b can be seen to be indeed positive definite).

One says that a line element is extended, unstretched or compressed accordingto 4 >1,
A=1or A<1.

Stretching along the Coordinate Axes
Consider three line elements lying along the three coordinate axes®. Suppose that the
material deforms in a special way, such that these line elements undergo a pure stretch,

that is, they change length with no change in the right angles between them. If the
stretches in these directions are A,, 4, and A,, then

X, =X, X=X, X =AX, (2.2.18)

and the deformation gradient has only diagonal elements in its matrix form:

A 0 0
F={0 4, 0] F, =40, (nosum) (2.2.19)
0 0 4,

Whereas material undergoes pure stretch along the coordinate directions, line elements
off-axes will in general stretch/contract and rotate relative to each other. For example, a

line element dX =[a,a,0]" stretches by A = JdXCdX = \/(/112 + A, ) /2 with
dx =[4,a,4,a,0]", and rotates if A, # 4,.

It will be shown below that, for any deformation, there are always three mutually
orthogonal directions along which material undergoes a pure stretch. These directions,
the coordinate axes in this example, are called the principal axes of the material and the
associated stretches are called the principal stretches.

3 with the material and spatial basis vectors coincident
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The Case of F Real and Symmetric

Consider now another special deformation, where F is a real symmetric tensor, in which
case the eigenvalues are real and the eigenvectors form an orthonormal basis (cf.
§1.11.2)*. In any given coordinate system, F will in general result in the stretching of line
elements and the changing of the angles between line elements. However, if one chooses
a coordinate set to be the eigenvectors of F, then from Eqn. 1.11.11-12 one can write®

o o >
o > o
S o o

3
F=>4h,®N,, [F]= (2.2.20)
i=1

where A4,, 4,, A, are the eigenvalues of F. The eigenvalues are the principal stretches and

the eigenvectors are the principal axes. This indicates that as long as F is real and
symmetric, one can always find a coordinate system along whose axes the material
undergoes a pure stretch, with no rotation. This topic will be discussed more fully in
§2.2.5 below.

2.2.4 The Green-Lagrange and Euler-Almansi Strain Tensors

Whereas the left and right Cauchy-Green tensors give information about the change in
angle between line elements and the stretch of line elements, the Green-Lagrange strain
and the Euler-Almansi strain tensors directly give information about the change in the
squared length of elements.

Specifically, when the Green-Lagrange strain E operates on a line element dX, it gives
(half) the change in the squares of the undeformed and deformed lengths:

dx|* —[dX]’
lox| —jox]” 1 {dXCdX - dX - dX}
2 2
= %{dX(C ~T)dX} action of E  (2.2.21)
= dXEdX

where

E =%(C—I)=%(FTF—I), E.; =%(C,J —5”) Green-Lagrange Strain  (2.2.22)

It is a symmetric positive definite material tensor. Similarly, the (symmetric spatial)
Euler-Almansi strain tensor is defined through

% in fact, F in this case will have to be positive definite, with det F > 0 (see later in §2.2.8)

3 n, are the eigenvectors for the basis e, , N , for the basis Ei , with fi, N , coincident; when the bases are

not coincident, the notion of rotating line elements becomes ambiguous — this topic will be examined later
in the context of objectivity
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jax” —[ax]

5 =dxedx| action of e (2.2.23)

and

1 1
e=> (1-b)= 3 (I-F"F"') Euler-Almansi Strain  (2.2.24)

Physical Meaning of the Components of E

Take a line element in the 1-direction, dX,, = [Xm, 0, 0]T , so that df((l) = [l, 0, O]T. The

square of the stretch of this element is

5 2 1 1
M THxm ) =C, - E, :E(Cn—l)za( (zn—l)
The unit extension is (]dx| - |dX|)/|dX| = 2—1. Denoting the unit extension of dX, by

E ., one has

>

1
E,=E,+ EE(ZI) (2.2.25)

and similarly for the other diagonal elements E,,, E., .

When the deformation is small, E(21> is small in comparison to E ,, so that E,, ~E . For

small deformations then, the diagonal terms are equivalent to the unit extensions.

Let 6,, denote the angle between the deformed elements which were initially parallel to
the X, and X, axes. Then

cos, = |dx(1)| . |dx(2)| B |dx(1>||dx<z)| |dX(1)| | |dX ) Foe
(2.2.26)
2E,,

B J2E, +1,2E,, +1

dx,, dxg, |dX<1)||dX<2>|{dX(1> dX(Z)} C,
<2>|

and similarly for the other off-diagonal elements. Note that if 6,, = 7/2, so that there is
no angle change, then E, =0. Again, if the deformation is small, then E, ,E,, are
small, and

%— 0, = sin(% - lej =cosd,, = 2E, (2.2.27)
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In words: for small deformations, the component E,, gives half the change in the original
right angle.

2.2.5 Stretch and Rotation Tensors

The deformation gradient can always be decomposed into the product of two tensors, a
stretch tensor and a rotation tensor (in one of two different ways, material or spatial
versions). This is known as the polar decomposition, and is discussed in §1.11.7. One

has

F=RU Polar Decomposition (Material) (2.2.28)

Here, R is a proper orthogonal tensor, i.e. R'R =1 with detR =1, called the rotation
tensor. It is a measure of the local rotation at X.

The decomposition is not unique; it is made unique by choosing U to be a symmetric

tensor, called the right stretch tensor. It is a measure of the local stretching (or
contraction) of material at X. Consider a line element dX. Then

Adk = FdX = RUdX (2.2.29)
and so { AProblem 2}
A2 =dXU - UdX (2.2.30)

Thus (this is a definition of U)

u=+c (C = UU) The Right Stretch Tensor (2.2.31)

From 2.2.30, the right Cauchy-Green strain C (and by consequence the Euler-Lagrange
strain E) only give information about the stretch of line elements; it does not give
information about the rotation that is experienced by a particle during motion. The
deformation gradient F, however, contains information about both the stretch and rotation.
It can also be seen from 2.2.30-1 that U is a material tensor.

Note that, since
dx = R(UdX),
the undeformed line element is first stretched by U and is then rotated by R into the

deformed element dx (the element may also undergo a rigid body translation c¢), Fig.
2.2.4. R is a two-point tensor.
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principal
material final
axes configuration

N
e & _.stretched
- " ndeformed
Figure 2.2.4: the polar decomposition

Evaluation of U

In order to evaluate U, it is necessary to evaluate JC . To evaluate the square-root, C
must first be obtained in relation to its principal axes, so that it is diagonal, and then the
square root can be taken of the diagonal elements, since its eigenvalues will be positive
(see §1.11.6). Then the tensor needs to be transformed back to the original coordinate
system.

Example
Consider the motion

X, =2X,=2X,, X=X +X,, X=X,

The (homogeneous) deformation of a unit square in the X, — X, plane is as shown in Fig.
2.2.5.

X 25 X3
1
1
- >
- N
- NS
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-¢ N
-7 . N
- . N
- . N
- N
- N
- -
- N
- N
. . N
2
< -
~ PRt
~ - o
N g
N Rgr
S QG -
N L
< z
3 o
N o
.~ z
~ e
s X
1> X

Figure 2.2.5: deformation of a square

One has
2 -2 0 5 -30

[Fl=|1 1 0| basis:(e,®E,) [C]=[F"F]=|-3 5 0| basis:(E, ®F,)
0 0 1 0 0 1
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Note that F is not symmetric, so that it might have only one real eigenvalue (in fact here it
does have complex eigenvalues), and the eigenvectors may not be orthonormal. C, on the
other hand, by its very definition, IS symmetric; it is in fact positive definite and so has
positive real eigenvalues forming an orthonormal set.

To determine the principal axes of C, it is necessary to evaluate the
eigenvalues/eigenvectors of the tensor. The eigenvalues are the roots of the characteristic
equation 1.11.5,

o’ —le.a’ +1l.a-1, =0

and the first, second and third invariants of the tensor are given by 1.11.6 so that
a’ —11a” +26a —16 =0, with roots a =8, 2,1. The three corresponding eigenvectors
are found from 1.11.8,

(C,, —a)N, +C,,N, +C;N, =0 (5-a)N,-3N, =0
CyN, +(C,, —a)N, +C,N, =0 — 3N, +(5-a)N, =0
C, Nl [ +C,N, +(Cy, —a)N, = (1-a)N, =0

Thus (normalizing the eigenvectors so that they are unit vectors, and form a right-handed
set, Fig. 2.2.6):

(i)  fora=8,-3N,-3N,=0,-3N,-3N, =0,-7N, =0, N, =LE -LE,
(i)  for @=2, 3N, -3N, =0,-3N, +3N, =0,-N, =0, N,=LE +LE,
(iii)y for @ =1, 4N, =3N, =0,-3N, +4N, =0,0N, =0, N, =E,

principal

material

directions

Figure 2.2.6: deformation of a square

Thus the right Cauchy-Green strain tensor C, with respect to coordinates with base
vectors E| = Nl, E, = N N, and E} = N, that is, in terms of principal coordinates, is

8 0 0 o
[c]= o 2 0| basis:N, ®N,
1
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This result can be checked using the tensor transformation formulae 1.13.6,
[c']=[Q][C]Q], where Q is the transformation matrix of direction cosines (see also the
example at the end of §1.5.2),

e e e -e, e- e A /32 1/42 0
Q; =|e,-e e, e e, e = N, N, N,|= ~1/42 1742 of.
e,-e e;-e, e, -e, co : 0 0 1

The stretch tensor U, with respect to the principal directions is

22 0 0| [4 0 0 o
ul=C]=| 0 2 o|=|0 4 0] basis:N,®N,
0 0 1| [0 0 4

These eigenvalues of U (which are the square root of those of C) are the principal
stretches and, as before, they are labeled 4,, 4,, 4;.

In the original coordinate system, using the inverse tensor transformation rule 1.13.6,

[u]=[eJu]el",

302 142 0
[U]= —1/42 3/42 0 basis : E; ®E;
0 0 1

so that

/42 —1/42 0

[R]=[FU"]=|1/v2 1/¥2 0| basis:e, ®F,
0 0 1

and it can be verified that R is a rotation tensor, i.e. is proper orthogonal.

Returning to the deformation of the unit square, the stretch and rotation are as illustrated
in Fig. 2.2.7 — the action of U is indicated by the arrows, deforming the unit square to the

dotted parallelogram, whereas R rotates the parallelogram through 45° as a rigid body to
its final position.

Note that the line elements along the diagonals (indicated by the heavy lines) lie along the
principal directions of U and therefore undergo a pure stretch; the diagonal in the N |
direction has stretched but has also moved with a rigid translation.
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Figure 2.2.7: stretch and rotation of a square

Spatial Description
A polar decomposition can be made in the spatial description. In that case,
F=vR Polar Decomposition (Spatial) (2.2.32)

Here v is a symmetric, positive definite second order tensor called the left stretch tensor,
and vv =b, where b is the left Cauchy-Green tensor. R is the same rotation tensor as
appears in the material description. Thus an elemental sphere can be regarded as first
stretching into an ellipsoid, whose axes are the principal material axes (the principal axes
of U), and then rotating; or first rotating, and then stretching into an ellipsoid whose axes
are the principal spatial axes (the principal axes of v). The end result is the same.

The development in the spatial description is similar to that given above for the material
description, and one finds by analogy with 2.2.30,

A7 =dtv - vdk (2.2.33)
In the above example, it turns out that v takes the simple diagonal form

242 0 0
[v]=| © V20 basis:e; Qe;.
0 0 1

so the unit square rotates first and then undergoes a pure stretch along the coordinate axes,
which are the principal spatial axes, and the sequence is now as shown in Fig. 2.2.9.
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Figure 2.2.8: stretch and rotation of a square in spatial description

Relationship between the Material and Spatial Decompositions

Comparing the two decompositions, one sees that the material and spatial tensors
involved are related through

v=RUR", b=RCR" (2.2.34)

Further, suppose that U has an eigenvalue 4 and an eigenvector N. Then UN = AN, so
that RUN = ARN. But RU =VR, so V(RN ): l(RlQI) Thus v also has an eigenvalue

A, but an eigenvector n = RN . From this, it is seen that the rotation tensor R maps the
principal material axes into the principal spatial axes. It also follows that R and F can be
written explicitly in terms of the material and spatial principal axes (compare the first of
these with 1.10.25)°:

3 3
R=h, ®N,, F=RU=R) AN, ®N, =) Ah, ®N, (2.2.35)
i=1 i=l

and the deformation gradient acts on the principal axes base vectors according to
{ AProblem 4}

FN, = A#,, FTN.:%ﬁi, F'i, =—N,, F'q, =AN, (2.2.36)

1
vy
The representation of F and R in terms of both material and spatial principal base vectors
in 2.3.35 highlights their two-point character.

Other Strain Measures

Some other useful measures of strain are

The Hencky strain measure: H =InU (material) or h = In v (spatial)

6 this is not a spectral decomposition of F (unless F happens to be symmetric, which it must be in order to
have a spectral decomposition)
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The Biot strain measure: B = U -1 (material) or b=v -1 (spatial)

The Hencky strain is evaluated by first evaluating U along the principal axes, so that the
logarithm can be taken of the diagonal elements.

The material tensors H, B, C, U and E are coaxial tensors, with the same eigenvectors
Ni . Similarly, the spatial tensors h, b, b, v and e are coaxial with the same eigenvectors

n;. From the definitions, the spectral decompositions of these tensors are

U=iAiNi ®N, v=23:/1iﬁi ® i,
i=1 i=1
c:i/ﬁN, ®N, b:iﬂfﬁ, ®n,
i=1 i=1
E=i%(ﬁf—l \, ®N, e:i%(l—l//lf A, ®h, (2.2.37)

Deformation of a Circular Material Element

A circular material element will deform into an ellipse, as indicated in Figs. 2.2.2 and
2.2.4. This can be shown as follows. With respect to the principal axes, an undeformed

line element dX = dX N, +dX,N, has magnitude squared (dX,)” +(dX,)’ = ¢*, where ¢
is the radius of the circle, Fig. 2.2.9. The deformed element is dx = UdX, or

dx = 4dX\N, + 4,dX,N, =dxn, +dx,n,. Thus dx, /4, =dX,, dx, /4, =dX,, which
leads to the standard equation of an ellipse with major and minor axes 4,C, A4,C:

(dx, / A,¢)’ +(dx, / Ac) =1.

Figure 2.2.9: a circular element deforming into an ellipse
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2.2.6 Some Simple Deformations
In this section, some elementary deformations are considered.
Pure Stretch

This deformation has already been seen, but now it can be viewed as a special case of the
polar decomposition. The motion is

X, =4X,, X,=4X,, X =4,X;| Pure Stretch (2.2.38)

and the deformation gradient is

Here, R =1 and there is no rotation. U =F and the principal material axes are
coincident with the material coordinate axes. A4,,4,,4,, the eigenvalues of U, are the

principal stretches.
Stretch with rotation
Consider the motion

X, =X, —kX,, X, =kX, +X,, X;=X,

so that
1 -k 0 cosd —sin@ O |secd 0 0
F=k 1 O0|=RU=|sin@ cos@ 0| O secd O
0 0 1 0 0 1 0 0 1

where Kk =tan@. This decomposition shows that the deformation consists of material
stretching by sec@(=~/1+k?), the principal stretches, along each of the axes, followed
by a rigid body rotation through an angle & about the X, =0 axis, Fig. 2.2.10. The

deformation is relatively simple because the principal material axes are aligned with the
material coordinate axes (so that U is diagonal). The deformation of the unit square is as
shown in Fig. 2.2.10.
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AN
< —— Xi5 %

V1+k?

Figure 2.2.10: stretch with rotation
Pure Shear

Consider the motion

X, =X, +kX,, X, =kX,+X,, X,=X,| PureShear (2.2.39)

so that
1 kK O 1 0 01 kK O
F=|k 1 O0(=RU=|0 1 Ok 1 0
0 0 1 0 0 1/0 0 1

where, since F is symmetric, there is no rotation, and F = U. Since the rotation is zero,
one can work directly with U and not have to consider C. The eigenvalues of U, the
principal stretches, are 1+k, 1 —k, 1, with corresponding principal directions

N,=LE +LE, N,=-LE +LE,and N, =E,.

The deformation of the unit square is as shown in Fig. 2.2.11. The diagonal indicated by
the heavy line stretches by an amount 1+ k whereas the other diagonal contracts by an
amount 1 —k. An element of material along the diagonal will undergo a pure stretch as
indicated by the stretching of the dotted box.

X,,

Figure 2.2.11: pure shear
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Simple Shear

Consider the motion

X, =X, +kX,, x,=X,, X;=X;| Simple Shear (2.2.40)
so that
1 k O 1 k 0
F=10 1 0 C=|k 1+k* 0
0 0 1 0 0 1

The invariants of C are I, =3+k*, I, =3+k*, Il =1 and the characteristic equation
is £ +(3+k*)A(1-1)-1=0, so the principal values of C are

A=1+1k*+1 km , 1. The principal values of U are the (positive) square-roots of
these: A = %m +1k,1. These can be written as 4 =secd +tan6, 1 by letting

tand =1k . The corresponding eigenvectors of C are

& k . k -
N, = E +E,, N,= E +E,, N,=E,

LK + 1 ky/4 4K LK —Lky4 4K

or, normalizing so that they are of unit size, and writing in terms of &,

NIZ\/1—521n0E1+\/1+s21n(9E2’ sz_\/lJrsZmHE]_'_\/l—szmHEz, N3:E3

The transformation matrix of direction cosines is then

J(=sing)/2 —/(1+sind)/2 0
[Q]=| /1 +sin6)/2 J(-sinB)/2 0
0 0 1

so that, using the inverse transformation formula, [U]=[Q]U'JQ]", one obtains U in
terms of the original coordinates, and hence

1 k O cos@ sin@ 0| cosd sin @ 0
F=|0 1 0|=RU=|-sinf cos@ O0|sind (1+sin’@)/cosd 0
0 0 1 0 0 1| O 0 1

The deformation of the unit square is shown in Fig. 2.2.12 (for k =0.2,8=5.71°). The

square first undergoes a pure stretch/contraction (N1 is in this case at 47.86° to the X,
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axis, with the diagonal of the square becoming the diagonal of the parallelogram, at 45.5°
to the X, axis), and is then brought to its final position by a negative (clockwise) rotation

of 6.

For this deformation, detF =1 and, as will be shown below, this means that the simple
shear deformation is volume-preserving.

Figure 2.2.12: simple shear

2.2.7 Displacement & Displacement Gradients

The displacement of a material particle’ is the movement it undergoes in the transition
from the reference configuration to the current configuration. Thus, Fig. 2.2.13,3

‘U(X,t) =x(X,t)— X‘ Displacement (Material Description) (2.2.41)

|u(x,t) =X— X(X,t)‘ Displacement (Spatial Description) (2.2.42)

Note that U and u have the same values, they just have different arguments.

Figure 2.2.13: the displacement

7 In solid mechanics, the motion and deformation are often described in terms of the displacement u. In
fluid mechanics, however, the primary field quantity describing the kinematic properties is the velocity v
(and the acceleration a = v ) — see later.

8 The material displacement U here is not to be confused with the right stretch tensor discussed earlier.
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Displacement Gradients

The displacement gradient in the material and spatial descriptions, oU(X,t)/0X and
ou(x,t)/0x, are related to the deformation gradient and the inverse deformation gradient

through
- ou;, 0ox
GradUzZ—Uz—a(Xa X):F—I K:K_ ij
aX 5 XX 5 ‘ Jax (2.2.43)
gradu = =M=I—F'1 ﬂ:é‘ij__i
ox X, X,
and it is clear that the displacement gradients are related through (see Eqn. 2.2.8)
gradu = GradU F™' (2.2.44)

The deformation can now be written in terms of either the material or spatial displacement
gradients:

dx = dX + dU(X) = dX + GradU dX

2.2.45
dx = dX +du(x) =dX+ gradudx ( )

Example

Consider again the extension of the bar shown in Fig. 2.1.5. The displacement is

UX) = (t+3X,1)E,, u(x)=(t+3x]tjel

1+3t
and the displacement gradients are

GradU =3tE,, gradu = (ij e
I+3t

The displacement is plotted in Fig. 2.2.14 for t =1. The two gradients oU, /0X, and
ou, / ox, have different values (see the horizontal axes on Fig. 2.2.14). In this example,
oU, /oX, > du, / 0x, — the change in displacement is not as large when “seen” from the
spatial coordinates.
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i i i >
1 5 9 13 %

Figure 2.1.14: displacement and displacement gradient

Strains in terms of Displacement Gradients

The strains can be written in terms of the displacement gradients. Using 1.10.3b,
1 (or
E= (F'F-1)

B % ((GradU +1)" (GradU +1)— I)

— 1 (GradU + (GradU)" + (GradU)' GradU), E,, =~
2 2lox, Tox, X, ox,

(2.2.46a)

1{au, LY, AU, 6UK}

ezé(I—FTFl)

= %(I — (1 - gradu)" (1~ gradu))

oX; 0X; 0X; OX;

] 1

- ou;
= %(gradu +(gradu)" —(gradu)" gradul e = 1 {% + My _ouy aﬂ}

(2.2.46b)

Small Strain

If the displacement gradients are small, then the quadratic terms, their products, are small
relative to the gradients themselves, and may be neglected. With this assumption, the
Green-Lagrange strain E (and the Euler-Almansi strain) reduces to the small-strain
tensor,

e= 1 (Gradu + (Gradu)') &, = [ M, Yy (2.2.47)
2 2lox, T,
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Since in this case the displacement gradients are small, it does not matter whether one
refers the strains to the reference or current configurations — the error is of the same order
as the quadratic terms already neglected’, so the small strain tensor can equally well be
written as

21 OX.  OX;

j i

1 1{ ou; du,
€= E(gradu + (gradu)T), & = —[—' + —'] Small Strain Tensor (2.2.48)

2.2.8 The Deformation of Area and Volume Elements

Line elements transform between the reference and current configurations through the
deformation gradient. Here, the transformation of area and volume elements is examined.

The Jacobian Determinant

The Jacobian determinant of the deformation is defined as the determinant of the
deformation gradient,

oX, OX,  0OX
oX, oX, oX,
detF = x, XK %K The Jacobian Determinant (2.2.49)
oX, X, oX,
OX;  OX;  OX
oX, X, oX,

Equivalently, it can be considered to be the Jacobian of the transformation from material
to spatial coordinates (see Appendix 1.B.2).

From Eqn. 1.3.17, the Jacobian can also be written in the form of the triple scalar product

j_0x [ox 0% (2.2.50)
ox, (ax, X,

Consider now a volume element in the reference configuration, a parallelepiped bounded
by the three line-elements dX, dX® and dX®. The volume of the parallelepiped'® is
given by the triple scalar product (Eqns. 1.1.4):

dv = dX® - (dX® x dX®) (2.2.51)

After deformation, the volume element is bounded by the three vectors dx, so that the
volume of the deformed element is, using 1.10.16f,

? although large rigid body rotations must not be allowed — see §2.7 .
19 the vectors should form a right-handed set so that the volume is positive.
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dv = dx® - (dx® x dx*)
= FdX" - (FdX® x FdX®)
— det F (dX" - dX® xdX )
=detF dV

(2.2.52)

Thus the scalar J is a measure of how the volume of a material element has changed with
the deformation and for this reason is often called the volume ratio.

dv=JdV| Volume Ratio (2.2.53)

Since volumes cannot be negative, one must insist on physical grounds that J > 0. Also,
since F has an inverse, J # 0. Thus one has the restriction

>0 (2.2.54)

Note that a rigid body rotation does not alter the volume, so the volume change is
completely characterised by the stretching tensor U. Three line elements lying along the
principal directions of U form an element with volume dV , and then undergo pure stretch
into new line elements defining an element of volume dv = 4,4,4,dV , where A, are the

principal stretches, Fig. 2.2.15. The unit change in volume is therefore also

=V _ a4 -1 (2.2.55)

reference current
configuration I\— |  configuration

dv dv=A440V | |

principal material
axes

Figure 2.2.15: change in volume

For example, the volume change for pure shear is —k* (volume decreasing) and, for
simple shear, is zero (cf. Eqn. 2.2.40 et seq., (secé + tan&)(secd —tanH)(1)—1=0).

An incompressible material is one for which the volume change is zero, i.e. the
deformation is isochoric. For such a material, J =1, and the three principal stretches are
not independent, but are constrained by

44,24, =1|  Incompressibility Constraint (2.2.56)
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Nanson’s Formula

Consider an area element in the reference configuration, with area dS , unit normal N ,
and bounded by the vectors dX, dX?, Fig. 2.2.16. Then

NdS = dX® xdX® (2.2.57)

The volume of the element bounded by the vectors dX, dX‘® and some arbitrary line
element dX is dV = NdS-dX. The area element is now deformed into an element of
area ds with normal fi and bounded by the line elements dx”, dx*
new element bounded by the area element and dx = FdX is then

. The volume of the

dv = fids - dx = fids - FdX = JNdS - dX (2.2.58)
N dx
N
dx® "

Figure 2.2.16: change of surface area

Thus, since dX is arbitrary, and using 1.10.3d,

fds = J F~'NdS Nanson’s Formula (2.2.59)

Nanson’s formula shows how the vector element of area nds in the current
configuration is related to the vector element of area NdS in the reference configuration.

2.2.9 Inextensibility and Orientation Constraints

A constraint on the principal stretches was introduced for an incompressible material,
2.2.56. Other constraints arise in practice. For example, consider a material which is

inextensible in a certain direction, defined by a unit vector A in the reference

configuration. It follows that ‘FA‘ =1 and the constraint can be expressed as 2.2.17,

ACA =1 Inextensibility Constraint (2.2.60)
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If there are two such directions in a plane, defined by A and B , making angles @ and ¢

respectively with the principal material axes Nl , NZ , then

A0 0 |cos@
1=[cos® sin@ 0] 0 A 0 |sind
0 0 4| O

and (22 — 22 )cos® 0 =1- 22 = (2 — 22 )cos” . It follows that g=6, g=0+1,
O+¢p=rx or O+¢=2r (or A4, =4, =1, i.e. no deformation).

Similarly, one can have orientation constraints. For example, suppose that the direction
associated with the vector A maintains that direction. Then

FA = ,uA Orientation Constraint (2.2.61)

for some scalar x> 0.

2.2.10 Problems

1. Inequations 2.2.8, one has from the chain rule
gradg = a—¢ei _ 09 X, e = [ o9 E, J(@Xm E, ®ei] = GradgF™'
OX oX, OX oX, OX
Derive the other two relations.
2. Take the dot product (Ad%)-(Ad%) in Eqn. 2.2.29. Thenuse R'R =1, U’ =U, and
1.10.3e to show that
A2 = d_X U-U d_X
|oX] |dX|
3. For the deformation
X, =X, +2X,, X, =X,-=-2X;, X;=-2X,+2X,+ X,
(a) Determine the Deformation Gradient and the Right Cauchy-Green tensors
(b) Consider the two line elements dX =e,, dX” =e, (emanating from (0,0,0)).
Use the Right Cauchy Green tensor to determine whether these elements in the
current configuration (dx"”, dx®) are perpendicular.

(c) Use the right Cauchy Green tensor to evaluate the stretch of the line element
dX =e, +e,, and hence determine whether the element contracts, stretches, or

stays the same length after deformation.
(d) Determine the Green-Lagrange and Eulerian strain tensors
(e) Decompose the deformation into a stretching and rotation (check that U is
symmetric and R is orthogonal). What are the principal stretches?
4. Derive Equations 2.2.36.
5. For the deformation
X, =X, X =X,+X;, X;=aX,+ X,
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(a) Determine the displacement vector in both the material and spatial forms
(b) Determine the displaced location of the particles in the undeformed state which
originally comprise
(i) the plane circular surface X, =0, X; +X; =1/(1-a%)
(i1) the infinitesimal cube with edges along the coordinate axes of length
dX, =¢
Sketch the displaced configurations if a =1/2
6. For the deformation
X, =X, +aX,, X,=X,+aX,, X, =aX, +X,
(a) Determine the displacement vector in both the material and spatial forms
(b) Calculate the full material (Green-Lagrange) strain tensor and the full spatial
strain tensor
(c) Calculate the infinitesimal strain tensor as derived from the material and spatial
tensors, and compare them for the case of very small a.
7. In the example given above on the polar decomposition, §2.2.5, check that the
relations Cn,; = An,, i =1,2,3 are satisfied (with respect to the original axes). Check

also that the relations Cn; = An], i = 1,2,3 are satisfied (here, the eigenvectors are the

unit vectors in the second coordinate system, the principal directions of C, and C is
with respect to these axes, i.e. it is diagonal).
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2.3 Deformation and Strain: Further Topics

2.3.1 Volumetric and Isochoric Deformations

When analysing materials which are only slightly incompressible, it is useful to
decompose the deformation gradient multiplicatively, according to

F=(0"1F=J'""F (2.3.1)
From this definition { AProblem 1},
detF =1 (2.3.2)

and so F characterises a volume preserving (distortional or isochoric) deformation. The
tensor J'°I characterises the volume-changing (dilational or volumetric) component of
the deformation, with det(J 13 I) =detF=1.

This concept can be carried on to other kinematic tensors. For example, with C=F'F,
C=J""F'F=J"°C. (2.3.3)

F and C are called the modified deformation gradient and the modified right
Cauchy-Green tensor, respectively. The square of the stretch is given by

2 =dXCdX = 32" [dXCdX | (2.3.4)

sothat 1 =J"°1 , where 4 is the modified stretch, due to the action of C. Similarly,
the modified principal stretches are

A, =32, =123 (2.3.5)
with
detF = 1, 1,4, =1 (2.3.6)
The case of simple shear discussed earlier is an example of an isochoric deformation, in

which the deformation gradient and the modified deformation gradient coincide,
J'PI=1.

2.3.2 Relative Deformation
It is usual to use the configuration at (X,t = 0) as the reference configuration, and define

quantities such as the deformation gradient relative to this reference configuration. As
mentioned, any configuration can be taken to be the reference configuration, and a new
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deformation gradient can be constructed with respect to this new reference configuration.
Further, the reference configuration does not have to be fixed, but could be moving also.

In many cases, it is useful to choose the current configuration (x,t) to be the reference
configuration, for example when evaluating rates of change of kinematic quantities (see
later). To this end, introduce a third configuration: this is the configuration at some time
t =7 and the position of a material particle X here is denoted by x = y(X,7), where y is

the motion function. The deformation at this time 7 relative to the current configuration
is called the relative deformation, and is denoted by X =y, (X,7), as illustrated in Fig.

2.3.1.

configuration
att=r

relative
X(t) (x,7) deformation
initial
configuration (X t)
current

configuration

Figure 2.3.1: the relative deformation

The relative deformation gradient F, is defined through

dx =F, (x,7)dx, F, = x (2.3.7)
ox

Also, since dx = F(X,t)dX and dx = F(X,7)dX, one has the relation
F(X,7) =F,(x,7) F(X,t) (2.3.8)

Similarly, relative strain measures can be defined, for example the relative right Cauchy-
Green strain tensor is

C,(r)=F,(r) F.(r) (2.3.9)
Example

Consider the two-dimensional motion
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X, =X, X, =X,(t+1)

Inverting these gives the spatial description X, = x,e”', X, = X, /(t +1), and the relative
deformation 1s

X (x,7)= X" =x,e""
X, (x,7)= X, (r+ ) =x,(r+ D) /(t+1)

The deformation gradients are

OX:
F(X,t) :Yei ®E; = ete1 QE, +(t+1)e, ®F,

]

A

oX,
F,(x,7) =a—'ei e, =e"'e,®e +(r+1)/(t+])e, Ve,
j

u
2.3.3  Derivatives of the Stretch
In this section, some useful formulae involving the derivatives of the stretches with
respect to the Cauchy-Green strain tensors are derived.
Derivatives with respect to b
First, take the stretches to be functions of the left Cauchy-Green strain b. Write b using
the spatial principal directions n; as a basis, 2.2.37, so that the total differential can be
expressed as
3
db=>"24dAh; ®h, + A [dh; ®h, +h; @ dh,] (2.3.10)

i=l

Since n; -n; = J;, then

n.dbn, =24dA + A2[h, -di, +dA, -A,]=24,d4  (no sum over i) (2.3.11)
This last follows since the change in a vector of constant length is always orthogonal to

the vector itself (as in the curvature analysis of §1.6.2). Using the property
uTv =T :(u®v), one has (summing over the k but not over the i; here d4, /d4, =J; )

A ob A 1 ob . _ .
db:(n, ®n,)=—dA4, :(n. ®n,)=24d4 — ——:(n.®n )=1 (2.3.12
(nl n|) 821( k (nl n|) i i 22‘ 8/1, (nl n|) ( )

Then, since db/0A4, : 04, /0b is also equal to 1, one has
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A i A A
La—b:(ni@)ni):a—b:% - L:L(ni@)ni) (2.3.13)
22, 04, 04, b ob 24,

The chain rule then gives the second derivative.

The above analysis is for distinct principal stretches. When 4, =4, =4, = 4, then
b= A1, db=24dAI. Also, db =3(b/d4)dA,so 3(6b/6A)=2AI, or

: i (2.3.14)
04 b ob

But db/0A:04/0b =1 and 3=1:1, and so in this case, 0A/db =1/21.

A similar calculation can be carried out for two equal eigenvalues 4, =4, =4 # 4,. In

summary,
%:Lﬁi ®n, (nosumoveri) A, #4, #4, # 4,
ob 24
9 _ L @n +i,®n,)
aib 211 A=A =A# 1,
_3:_(A3 ®ﬁ3)
b 24,
a—ﬂv:L iﬁi®ﬁi=LI =k =2=2
ob 21+ 24
(2.3.15)
0’4, | A ,
P :——i3ni ®n; ®n, ®n; (nosumoveri) A #A, #A, #4,

Derivatives with respect to C
The stretch can also be considered to be a function of the right Cauchy-Green strain C.

The derivatives of the stretches with respect to C can be found in exactly the same way as
for the left Cauchy-Green strain. The results are the same as given in 2.3.15 except that,

referring to 2.2.37, b is replaced by C and n is replaced by N.

2.3.4  The Directional Derivative of Kinematic Quantities

The directional derivative of vectors and tensors was introduced in §1.6.11 and §1.15.4.
Taking directional derivatives of kinematic quantities is often very useful, for example in
linearising equations in order to apply numerical solution algorithms

The Deformation Gradient

First, consider the deformation gradient as a function of the current position x (or motion
¥ ) and examine its value at x +a:
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F(x +a) = F(x) + 8,F[a]+o(a]) (2.3.16)

The directional derivative 6 _F[a]=(0F/0x)a can be expressed as

0 Fla]= a4 F(x +a)
d€ =0
_d| dx+ea) 2.3.17)
de|,., 00X
= Grada
= (grada)F
the last line resulting from 2.2.8b. It follows that the directional derivative of the
deformation gradient in the direction of a displacement vector u from the current
configuration is
0, Flu]= (gradu)F (2.3.18)

On the other hand, consider the deformation gradient as a function of X and examine its
value at X+ A:

F(X+A)=F(X)+0,F[A] (2.3.19)

and now

o F[A]= = F(X +:£A)
=0

= i iX(X + gA)
del,_, 0X

d 0
=—| —(x+FeA 2.3.20
dggzoaX(XJr ¢A) (2.3.20)
= Grad(FA)
= Grada

where a = FA .
Other Kinematic Quantities
The directional derivative of the Green-Lagrange strain, the right and left Cauchy-Green

tensors and the Jacobian in the direction of a displacement u from the current
configuration are { A Problem 2}
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0,E[u] =F"¢F

0,Clu] = 2F"¢F

d.b[u] = (gradu )b + b(gradu )"
0,J[u] = Jdivu

(2.3.21)

where ¢ is the small-strain tensor, 2.2.48.

The directional derivative is also useful for deriving various relations between the
kinematic variables. For example, for an arbitrary vector a, using the chain rule 1.15.28,
2.3.20, 1.15.24, the trace relations 1.10.10e and 1.10.10b, and 2.2.8b, 1.14.9,

(GradJ)-a=0,J]a]
= 0 J[0xFla]
=0, J[Grad(Fa))
= JF " : Grad(Fa)
= Jtr(F_1 Grad(Fa)
= Jtr(Grad(Fa)F‘l)
= Jtr(grad(Fa))
= J div(Fa)

(2.3.22)
)

so that, from 1.14.16b with a constant,

GradJ = JdivF"| (2.3.23)

2.35 Problems

1. Use 1.10.16¢ to show that detF =1.
2. (a) use the relation E = %(FTF - I), Eqn. 2.3.18, 0 ,F[u] = (gradu)F , and the product

rule of differentiation to derive 2.3.21a, 0 _E[u] = F"&F, where ¢ is the small
strain tensor.
(b) evaluate axC[u] (in terms of F and ¢, the small strain tensor)

(c) evaluate 8xb[u] (in terms of gradu and b)
(d) evaluate & _J[u] (in terms of J and divu ; use the chain rule 8 J [u]=0,J[0 F[u]],
with J(F) = detF, 0 F[u]= Gradu)
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2.4 Material Time Derivatives

The motion is now allowed to be a function of time, x = x(X,t), and attention is given to
time derivatives, both the material time derivative and the local time derivative.

2.4.1 Velocity & Acceleration

The velocity of a moving particle is the time rate of change of the position of the particle.
From 2.1.3, by definition,

V(X,t) = % (2.4.1)

In the motion expression x = y(X,t), X and t are independent variables and X is

independent of time, denoting the particle for which the velocity is being calculated. The
velocity can thus be written as oy (X,t)/ ot or, denoting the motion by x(X,t), as

dx(X,t)/dt or ox(X,t)/ot.

The spatial description of the velocity field may be obtained from the material description
by simply replacing X with x, i.e.

vx.t) = V(3" (x.0),t) (2.4.2)

As with displacements in both descriptions, there is only one velocity, V(X,t) = v(x,t) —
they are just given in terms of different coordinates.

The velocity is most often expressed in the spatial description, as

4
v(x,t) =x = d—’t‘ velocity (2.4.3)

To be precise, the right hand side here involves x which is a function of the material
coordinates, but it is understood that the substitution back to spatial coordinates, as in
2.4.2, is made (see example below).

Similarly, the acceleration is defined to be

d?x(X,t) _ d’x _dv _ o (X, 1)
dt’ dt*>  dt ot

AX, 1) = (2.4.4)

Example

Consider the motion

X =X, +t°X,, X, =X, +t’X,, X, =X,
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The velocity and acceleration can be evaluated through

dx d’x
V(X,t) = i 2tX,e, +2tX e,, A(Xt) = pre) =2X,e, +2Xe,

t2
One can write the motion in the spatial description by inverting the material description:

_x -ty x:xz—tle
-ttt

1 5 3 = X5

Substituting in these equations then gives the spatial description of the velocity and
acceleration:

. X, —t*X X, —t*Xx
v(x,) = V(1 (x,1).t) =2t 21_t4 Le +2t 11_t42e2

_ X, —t’X X, —t*x
aoh) =A(x" (0,1 = 22— e + 22—,

2.4.2 The Material Derivative

One can analyse deformation by examining the current configuration only, discounting
the reference configuration. This is the viewpoint taken in Fluid Mechanics — one focuses
on material as it flows at the current time, and does not consider “where the fluid was”.

In order to do this, quantities must be cast in terms of the velocity. Suppose that the
velocity in terms of spatial coordinates, v = v(x,t) is known; for example, one could

have a measuring instrument which records the velocity at a specific location, but the
motion y itself is unknown. In that case, to evaluate the acceleration, the chain rule of

differentiation must be applied:

\ Eiv(x(t),t)=@+ﬁd—X
dt ot oOx dt

or

ov
a= * + (grad V)V acceleration (spatial description) (2.4.5)

The acceleration can now be determined, because the derivatives can be determined
(measured) without knowing the motion.

In the above, the material derivative, or total derivative, of the particle’s velocity was

taken to obtain the acceleration. In general, one can take the time derivative of any
physical or kinematic property (0) expressed in the spatial description:
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%(o) = %(0) +grad(e)v|  Material Time Derivative (2.4.6)

For example, the rate of change of the density p = p(x,t) of a particle instantaneously at
X is

pzd—p:a—p—i-gradp-v (2.4.7)

dt ot
The Local Rate of Change

The first term, dp/ot, gives the local rate of change of density at x whereas the second
term v-grad p gives the change due to the particle’s motion, and is called the convective
rate of change.

Note the difference between the material derivative and the local derivative. For example,
the material derivative of the velocity, 2.4.5 (or, equivalently, dV(X,t)/dt in 2.4.4, with

X fixed) is not the same as the derivative ov(x,t) /ot (with x fixed). The former is the

acceleration of a material particle X. The latter is the time rate of change of the velocity
of particles at a fixed location in space; in general, different material particles will occupy
position x at different times.

The material derivative d /dt can be applied to any scalar, vector or tensor:

da OJa
=—=—+grada-v
dt ot
= % = % +(grada)v (2.4.8)
dA 0A
== dA
dt o +(gra )V

Another notation often used for the material derivative is D/ Dt :
—=—=f (2.4.9)

Steady and Uniform Flows

In a steady flow, quantities are independent of time, so the local rate of change is zero
and, for example, p =grad p-v. In a uniform flow, quantities are independent of

position so that, for example, p =0dp /ot

Example

Consider again the previous example. This time, with only the velocity v(x,t) known,
the acceleration can be obtained through the material derivative:
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a(x,t) = % +(gradv)v

2t° 2t X, —t*x
- 0 2t==2 L
X i 1-t* 1t 1—t24
O [ 4, %, —t°x X, —t°Xx 2t 2t* X, —t*X
=—|2t—=2—le +2t——2e, |+ — 0l 2t——=
6’[( 1-t* 1-t 2] -t 1=t 1-t
0 0 0 0
X, —t°X, X, —t°X,
B AT e ©
as before.
[
The Relationship between the Displacement and Velocity
The velocity can be derived directly from the displacement 2.2.42:
_dx_d@+X)_du (2.4.10)
dt dt dt
or
du Ou
v=— =—+(gradu)v 24.11
0 = o " (eradu) (2:4.11)
When the displacement field is given in material form one has
y=3du (2.4.12)
dt
243 Problems
1.  The density of a material is given by
e—2t
p =
X-X

The velocity field is given by

V=X, +2X;, V, =Xy —2X,, V; =X +2X,
Determine the time derivative of the density (a) at a certain position X in space,
and (b) of a material particle instantaneously occupying position x.
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2.5 Deformation Rates

In this section, rates of change of the deformation tensors introduced earlier, F, C, E, etc.,
are evaluated, and special tensors used to measure deformation rates are discussed, for
example the velocity gradient 1, the rate of deformation d and the spin tensor w.

2.5.1 The Velocity Gradient

The velocity gradient is used as a measure of the rate at which a material is deforming.

Consider two fixed neighbouring points, x and x + dx, Fig. 2.5.1. The velocities of the
material particles at these points at any given time instant are v(x) and v(x+ dx), and

v(x +dx) = v(x)+ @dx ,
ox

The relative velocity between the points is

dV:@dxsldx (2.5.1)
ox

with 1 defined to be the (spatial) velocity gradient,

ov
l=—=gradv, I =— Spatial Velocity Gradient (2.5.2)
%) ¢ OX

Figure 2.5.1: velocity gradient

Expression 2.5.1 emphasises the tensorial character of the spatial velocity gradient,
mapping as it does one vector into another. Its physical meaning will become clear when
it is decomposed into its symmetric and skew-symmetric parts below.

The spatial velocity gradient is commonly used in both solid and fluid mechanics. Less

commonly used is the material velocity gradient, which is related to the rate of change of
the deformation gradient:

Gmdv:m:i(wjzﬁ(wjzp (2.5.3)
oX oX ot ot oX
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and use has been made of the fact that, since X and t are independent variables, material

time derivatives and material gradients commute.

25.2 Material Derivatives of the Deformation Gradient

The spatial velocity gradient may be written as

O _NX_0 ()X _2(o)X
ox o0Xox oX\ot)ox ot\oX)ox

or 1 =FF' so that the material derivative of F can be expressed as

F =1F| Material Time Derivative of the Deformation Gradient (2.5.4)
Also, it can be shown that { A Problem 1}
P =
F'——FI (2.5.5)
FT—1'F"

2.5.3 The Rate of Deformation and Spin Tensors

The velocity gradient can be decomposed into a symmetric tensor and a skew-symmetric
tensor as follows (see §1.10.10):
(2.5.6)

where d is the rate of deformation tensor (or rate of stretching tensor) and w is the
spin tensor (or rate of rotation, or vorticity tensor), defined by

ov. OV,
d=1(+17) d, Y
2 2\ ox;  0Ox
Rate of Deformation and Spin Tensors
1 T 1] ov; é)Vi
welfom) w2l
2 2\ 0x;  OX
(2.5.7)
The physical meaning of these tensors is next examined.
Kelly
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The Rate of Deformation

Consider first the rate of deformation tensor d and note that
d
ldx = dv = a(dx) (2.5.8)

The rate at which the square of the length of dx is changing is then

)

d 2\ d d
aﬂdx| )— a(dx-dx)— 2dx -a(dx)— 2dxldx = 2dxddx

ide|2 ): 2|dx|i(]dx
dt t (2.5.9)

2 , then leads

the last equality following from 2.5.6 and 1.10.31e. Dividing across by 2|dx

to

A s A
B =ndn Rate of stretching per unit stretch in the direction n (2.5.10)

where 1 = |dx| /|dX| is the stretch and n = dx /|dx| is a unit normal in the direction of dx.

Thus the rate of deformation d gives the rate of stretching of line elements. The diagonal
components of d, for example

d,, =ede,,
represent unit rates of extension in the coordinate directions.

Note that these are instantaneous rates of extension, in other words, they are rates of
extensions of elements in the current configuration at the current time; they are not a
measure of the rate at which a line element in the original configuration changed into the
corresponding line element in the current configuration.

Note:
e Eqn. 2.5.10 can also be derived as follows: let N be a unit normal in the direction of dX, and
,or A4 =FN.

n be the corresponding unit normal in the direction of dx. Then ﬁ|dx| = FN|dX
Differentiating gives n1+ A = FN =IFN or nA + a4 = 1A . Contracting both sides with
leads to ﬁ-ﬁ+ﬁ-ﬁ(ﬂl//1):ﬁlﬁ. But n-n=1— d(n-n)dt =0 so, by the chainrule, n-n =0

(confirming that a vector n of constant length is orthogonal to a change in that vector dn ), and
the result follows

Consider now the rate of change of the angle € between two vectors dx”, dx'*. Using
2.5.8 and 1.10.3d,
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%(dx“) Ldx?)= %(dx(” )-dx® +dx® -%(dx(z))
=1dx" - dx® +dx® - 1dx? (2.5.11)
= (l +17 )dx(l) -dx®?

=2 dx"ddx®

which reduces to 2.5.9 when dx = dx®. An alternative expression for this dot product
is

%de(” de(z)‘cos 6): %de“)udxm‘cos0+%de(z)udx(”‘cosﬁ—sin@é‘dx(” de(z)‘
Equ(l)‘) Equm‘
(AT s+ At o5 —sind6 ‘dx“)de(z)‘
Fy e
(2.5.12)
Equating 2.5.11 and 2.5.12 leads to
2h,dh, =[%+j—2}:050—sin09 (2.5.13)
1 2

where 4, = ‘dx(i)‘/‘dX“)‘ is the stretch and f, = dx /‘dx(i)‘ is a unit normal in the

direction of dx .

It follows from 2.5.13 that the off-diagonal terms of the rate of deformation tensor
represent shear rates: the rate of change of the right angle between line elements aligned

with the coordinate directions. For example, taking the base vectors e, =n,, e, =n,,
2.5.13 reduces to

d,=-—6, (2.5.14)

where 6,, is the instantaneous right angle between the axes in the current configuration.
The Spin

Consider now the spin tensor w; since it is skew-symmetric, it can be written in terms of
its axial vector @ (Eqn. 1.10.34), called the angular velocity vector:
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o =-Wy,e, +W;,e, —W,e;
AT A NN 0515
2\ ox, ox 2{ 0%, oX 20 0% 0X,
=lcurlv
2

(The vector 2@ is called the vorticity (or spin) vector.) Thus when d is zero, the motion
consists of a rotation about some axis at angular velocity @ = |co| (cf. the end of §1.10.11),

with v =@ xr, r measured from a point on the axis, and wr =@ xr=v.

On the other hand, when 1=d, w =0, one has ® =0, and the motion is called
irrotational.

Example (Shear Flow)

Consider a simple shear flow in which the velocity profile is “triangular” as shown in
Fig. 2.5.2. This type of flow can be generated (at least approximately) in many fluids by
confining the fluid between plates a distance h apart, and by sliding the upper plate over
the lower one at constant velocity V. If the material particles adjacent to the upper plate
have velocity Ve, , then the velocity field is v = jX,e,, where y =V /h. This is a steady
flow (0v /ot =0); at any given point, there is no change over time. The velocity gradient
is I = e, ®e, and the acceleration of material particles is zero: a=1v =0. The rate of
deformation and spin are

Jo7o Jo 7o

d==|7 0 0|, =—|-7 0 0
2|7 A
000 0 0 0

and, from 2.5.14, y = —6,,, the rate of change of the angle shown in Fig. 2.5.2.

\Y
—
> >
——/ ¢ >
h 2
—> —>
Tg v=Vi(X)e
> 2ye M

Figure 2.5.2: shear flow

The eigenvalues of d are 4 =0, + /2 (detd =0) and the principal invariants, Eqn.
1.11.17,are I, =0, I, =—1 7% 1, =0. For A =+y/2, the eigenvector is

n =[1 1 0] andfor 1=-y/2,itisn, =[-1 1 O] (for A=0 itis e,). (The
eigenvalues and eigenvectors of w are complex.) Relative to the basis of eigenvectors,
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72 0 0
d=| 0 -y/2 0
0 0 0

so at 45° there is an instantaneous pure rate of stretching/contraction of material.

n
2.5.4  Other Rates of Strain Tensors
From 2.2.9,2.2.22,
d 1. :

——(dx-dx) = dX—CdX = dXEdX (2.5.16)

2 dt 2
This can also be written in terms of spatial line elements:

dXEdX = dx[F "EF ' dx (2.5.17)

But from 2.5.9, these also equal dxddx, which leads to expressions for the material time
derivatives of the right Cauchy-Green and Green-Lagrange strain tensors (also given here
are expressions for the time derivatives of the left Cauchy-Green and Euler-Almansi
tensors { A Problem 3})

C =2F"dF
E=F"dF
b=Ib+bl"

ée=d-1"e—el

(2.5.18)

Note that

[Edt=[dE
so that the integral of the rate of Green-Lagrange strain is path independent and, in
particular, the integral of E around any closed loop (so that the final configuration is the

same as the initial configuration) is zero. However, in general, the integral of the rate of
deformation,

j ddt

is not independent of the path — there is no universal function h such that d = dh/dt with
jddt = jdh . Thus the integral J‘ddt over a closed path may be non-zero, and hence the

integral of the rate of deformation is not a good measure of the total strain.
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The Hencky Strain

The Hencky strain is, Eqn. 2.2.37, h = z; (In 4 )A, ® A, , where n, are the principal
spatial axes. Thus, if the principal spatial axes do not change with time,
h= z; (/ii /A, )ﬁi ®n, . With the left stretch v = Z; An, ®n, , it follows that (and

similarly for the corresponding material tensors), H=InU=UU", h=Inv=vwv".

For example, consider an extension in the coordinate directions, so
F=U=v=Y" An, ®n; = 23 AN, ® N, . The motion and velocity are
i=1 i=1

so d, = /ii / Z; (no sum), and d = h. Further, h = _[ ddt . Note that, as mentioned above,

this expression does not hold in general, but does in this case of uniform extension.

255 Material Derivatives of Line, Area and Volume Elements

The material derivative of a line element d(dx)/dt has been derived (defined) through
2.4.8. For area and volume elements, it is necessary first to evaluate the material

derivative of the Jacobian determinant J. From the chain rule, one has (see Eqns 1.15.11,
1.15.7)

. d oJ

J=—0F)=—:F=JF":F 2.5.19
L O)=— (2.5.19)
Hence { A Problem 4}
J=Jtr()
= Jtr(gradv) (2.5.20)
= Jdivv

Since 1 =d+w and trw = 0, it also follows that J = Jtrd.

As mentioned earlier, an isochoric motion is one for which the volume is constant — thus
any of the following statements characterise the necessary and sufficient conditions for an
isochoric motion:

J=1, J=0, divw=0, trd=0, F':F=0 (2.5.21)

Applying Nanson’s formula 2.2.59, the material derivative of an area vector element is
{ AProblem 6}
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%(ﬁds) = (divv—17 Jads (2.5.22)

Finally, from 2.2.53, the material time derivative of a volume element is

%(dv) = %(Jdv )=JdV =divvdv (2.5.23)

Example (Shear and Stretch)

Consider a sample of material undergoing the following motion, Fig. 2.4.3.

X, = X, +kAX, Xy =% =k,
X, = AX, , X, %2
X =X X, =X,
with 2= A(t), k =k(t).

XoXl g
<>

5$ /
k

A
%
X5 X

Figure 2.4.3: shear and stretch

The deformation gradient and material strain tensors are

1 ki 0 I ki 0 0 LKA 0
F=[0 4 0| C=|ki (1+K)7 0 E=|ika 1(2(1+k*)-1) o],
0 0 1 o 0 1 0 0 0

the Jacobian J =detF = 4, and the spatial strain tensors are
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1+k22 k2 0 0 ok 0
bo| k2 2 o eo|ik 10K 2’1 -
p
0 0 1 0 0 0

This deformation can also be expressed as a stretch followed by a simple shear:

1 kK 01 0 O
F=/0 1 00 4 O
0 0 110 0 1
The velocity is
(k4 + k)X, (k+ k(A7 2)K,
dx . :
v==Xol X, L v (ak
dt
0 0
The velocity gradient is
0 k+k(i/4) 0
=%_lo i o
dx
0 0 0
and the rate of deformation and spin are
0 tk+k(is2) o 0 tk+k(ira) o
d=[1[k+k(isa)] A2 0| w=[-tk+k(isa) 0 0
0 0 0 0 0 0
Also
0 K + kA 0
C=2F"dF =| Ak +ki 24(kik+ (k> +1)) ©
0 0 0

As expected, from 2.5.20,

J=Jtr(@)=3(i/2)=4

Solid Mechanics Part 111 251 Kelly



Section 2.5

256 Problems

(a) Differentiate the relation I = FF ™' and use 2.5.4, F =1F, to derive 2.5.5b,

Fl=—F.
(b) Differentiate the relation I = F"F" and use 2.5.4, F =1F, and 1.10.3¢ to derive

25.5¢, F' =-1"F".

For the velocity field
Vi = XXy, V, =2X0X;, Vg =3XX,X,
determine the rate of stretching per unit stretch at (2,0,1) in the direction of the unit
vector
(4e, —3e,)/5
And in the direction of e, ?
(a) Derive the relation 2.5.18a, C = 2F"dF directly from C =F'F
(b) Use the definitions b=FF" and e = (I1-b™')/2 to derive the relations
2.5.18c,d: b=1b+bl", é=d-1Te—el

Use 2.5.4,2.5.19, 1.10.3h, 1.10.6, to derive 2.5.20.
For the motion X, =3X t—t>, x, = X, + X,t, X, = tX,, verify that F =IF . What is
the ratio of the volume element currently occupying (1,1,1) to its volume in the

undeformed configuration? And what is the rate of change of this volume element,
per unit current volume?
Use Nanson’s formula 2.2.59, the product rule of differentiation, and 2.5.20, 2.5.5c,

to derive the material time derivative of a vector area element, 2.5.22 (note that N ,
a unit normal in the undeformed configuration, is constant).
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2.6 Deformation Rates: Further Topics

2.6.1 Relationship between I, d, w and the rate of change of R
and U

Consider the polar decomposition F = RU . Since R is orthogonal, RR" =1, and a
differentiation of this equation leads to

Q, =RR" =-RR" (2.6.1)

with Q, skew-symmetric (see Eqn. 1.14.2). Using this relation, the expression 1=FF ',
and the definitions of d and w, Eqn. 2.5.7, one finds that { AProblem 1}

1=RUU'R" +Q,
w= %R(UU‘ ~UTUR"+Q,
= Rskew[UU' R" +Q, (2.6.2)
d= %R(UU‘I +U'UR"
= Rsym[UU" R

Note that , being skew-symmetric is consistent with w being skew-symmetric, and that
both w and d involve R, and the rate of change of U.

When the motion is a rigid body rotation, then U =0, and
w=Q, =RR" (2.6.3)

2.6.2 Deformation Rate Tensors and the Principal Material and
Spatial Bases

The rate of change of the stretch tensor in terms of the principal material base vectors is
3 . .
U:Z{AiNi ®N, + AN, ®N, + 4N, ®Ni} (2.6.4)
i=1

Consider the case when the principal material axes stay constant, as can happen in some
simple deformations. In that case, U and U™ are coaxial (see §1.11.5):

23: AN;®N; and U‘1=Z3: N; ® (2.6.5)

1R
i=1 i=1 ﬂ’
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with UU™" = U™'U and, as expected, from 2.5.25b, w = Q, = RR", that is, any spin is
due to rigid body rotation.

Similarly, from 2.2.37, and differentiating N, ® N, =1,
. 3 A A A A A A
E:Z{miNi ®N, +L AN, ®N; +1 N, ®Ni}. (2.6.6)
i=1

Also, differentiating Ni N ; =0, leads to N i N | = N i N ; and so the expression

. 3
N, =>W,N, (2.6.7)
m=1
is valid provided W;; are the components of a skew-symmetric tensor, W;; =-W,;. This

leads to an alternative expression for the Green-Lagrange tensor:

= i/miﬁi ®N, + igwmn(z; - 2N, ®N, (2.6.8)
i=1 m,n=1

Similarly, from 2.2.37, the left Cauchy-Green tensor can be expressed in terms of the
principal spatial base vectors:

b= iz?ﬁi ®n,, b= Z{Mi/iiﬁi ®h, + A0, ®h, + AR, ®ﬁi} (2.6.9)

3
i=1 i=1

Then, from inspection of 2.5.18c, b =1b +bl", the velocity gradient can be expressed as
{ AProblem 2}

3 [ 4 , s (4 :
1=> /1—'ﬁicx)ﬁi+ﬁi®ﬁi =y /1—'ﬁi®ﬁi—ﬁi®ﬁi (2.6.7)
i=1 i i=1 i

2.6.3 Rates of Change and the Relative Deformation

Just as the material time derivative of the deformation gradient is defined as

F= gF(X,t) = 3(%}
ot ot oX

one can define the material time derivative of the relative deformation gradient, cf. §2.3.2,
the rate of change relative to the current configuration:

(2.6.8)

7=t

. 0
F (x,t) = EFt (x,7)
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From 2.3.8, F,(x,7) = F(X,7)F(X,t)", so taking the derivative with respect to 7 (t is
now fixed) and setting 7 =t gives

F, (x,t) = F(X,H)F(X,t)"
Then, from 2.5 .4,
1=F (x,t) (2.6.9)

as expected — the velocity gradient is the rate of change of deformation relative to the
current configuration. Further, using the polar decomposition,

F.(x,7) =R, (x,7)U,(x,7)
Differentiating with respect to 7 and setting 7 =t then gives
F,(x,t) = R,(x,)U, (x,t) + R (X, 1)U, (x,1)
Relative to the current configuration, R, (x,t) = U, (x,t) =1, so, from 2.4.34,
1=U,(x,t) + R, (x,t) (2.6.10)

With U symmetric and R skew-symmetric, U, (x,t), R,(x,t) are, respectively, symmetric
and skew-symmetric, and it follows that

d="U,(x1)

2.6.11
w = Rt(x,t) ( )

again, as expected — the rate of deformation is the instantaneous rate of stretching and the
spin is the instantaneous rate of rotation.

The Corotational Derivative

The corotational derivative of a vector a is a =a —wa . Formally, it is defined through
o .1
a= E_rgﬁ{a(t +At) - R, (t+ Ad)a(t)}

= lim i {a(t +At) - [Rt (t) + AR, (t) +-- ')]a(t)}

= 1imi{a(t +At) - [T+ Atw(t) +--) fa(t)} (2.6.12)

At—0 At
- gn%)ﬁ {a(t + At) —a(t)} - w(b)a(t)

=a—wa
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The definition shows that the corotational derivative involves taking a vector a in the
current configuration and rotating it with the rigid body rotation part of the motion, Fig.
2.6.1. It is this new, rotated, vector which is compared with the vector a(t + At) , which

has undergone rotation and stretch.

at+At)=F| _ a(t)

R, a(t)

r=t+At a(t)

Figure 2.6.1: rotation and stretch of a vector

2.6.4 Rivlin-Ericksen Tensors

The n-th Rivlin-Ericksen tensor is defined as

An(t)zddTCt(r , n=0,1,2,-- (2.6.13)

=t

where C,(z) is the relative right Cauchy-Green strain. Since C, (Tl:t =I,A,=1I. To

evaluate the next Rivlin-Ericksen tensor, one needs the derivatives of the relative
deformation gradient; from 2.5.4, 2.3.8,

d

K (r)= di [FOF®) =1 Rt =1(c)F,(7) (2.6.14)
T T

Then, with 2.5.5a, d(F,(r)")/dz = F(z)'I(r)", and

A =[F ) 1) 1) ()]
~(10)+1)")

=2d

Thus the tensor A, gives a measure of the rate of stretching of material line elements (see
Eqn. 2.5.10). Similarly, higher Rivlin-Ericksen tensors give a measure of higher order

stretch rates, A, A , and so on.
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2.6.5 The Directional Derivative and the Material Time
Derivative

The directional derivative of a function T(t) in the direction of an increment in t is, by
definition (see, for example, Eqn. 1.15.27),

0, T[At] = T(t + At) — T(t) (2.6.15)
or
dT
O.TIA =~ At (2.6.16)

Setting At =1, and using the chain rule 1.15.28,

T =0,T[1]
=0 T[o.x[1]] (2.6.17)
=2 T[v]

The material time derivative is thus equivalent to the directional derivative in the direction
of the velocity vector.

2.6.6 Problems

1. Derive the relations 2.6.2.
2. Use2.6.9 to verify 2.5.18, b=1b +bl".
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2.7 Small Strain Theory
When the deformation is small, from 2.2.43-4,

F =1+ GradU
=1+ (gradu)F (2.7.1)
~ I+ gradu

neglecting the product of gradu with GradU, since these are small quantities. Thus one
can take GradU = gradu and there is no distinction to be made between the undeformed

and deformed configurations. The deformation gradient is of the form F =1+ a, where
a is small.

2.7.1 Decomposition of Strain

Any second order tensor can be decomposed into its symmetric and antisymmetric part
according to 1.10.28, so that

ou 1| ou (8u]T 1{ Ou (auJT
— = — 4| = +—| —=] = =g+ Q
ox 2| ox 15). 2| ox 15).9

ou; 1{du, Ou;| 1(du, Ou;
== + | -1 =5 +Q,
ox; 2\ ox;  ox 2\ ox;  ox ! !

j i i

(2.7.2)

where € is the small strain tensor 2.2.48 and €, the anti-symmetric part of the
displacement gradient, is the small rotation tensor, so that F can be written as

Small Strain Decomposition of the Deformation Gradient (2.7.3)

It follows that (for the calculation of e, one can use the relation (I+8)™ ~1-8 for small
d)

C=b=1+2¢

2.7.4
E=e=c¢ ( )

Rotation

Since Q is antisymmetric, it can be written in terms of an axial vector®, cf. §1.10.11, so
that for any vector a,

Qa=omxa, o=-Q, e +Q.e —-Q e, (2.7.5)

The relative displacement can now be written as
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du = (gradu )JdX

(2.7.6)
=edX +oxdX

The component of relative displacement given by @ x dX is perpendicular to dX, and so
represents a pure rotation of the material line element, Fig. 2.7.1.

w
dx

dX
Figure 2.7.1: a pure rotation

Principal Strains

Since € is symmetric, it must have three mutually orthogonal eigenvectors, the principal
axes of strain, and three corresponding real eigenvalues, the principal strains,
e, e,, e,), which can be positive or negative, cf. §1.11. The effect of ¢ is therefore to

deform an elemental unit sphere into an elemental ellipsoid, whose axes are the principal
axes, and whose lengths are 1+¢,,1+¢,,1+e,. Material fibres in these principal

directions are stretched only, in which case the deformation is called a pure deformation;
fibres in other directions will be stretched and rotated.

The term €dX in 2.7.6 therefore corresponds to a pure stretch along the principal axes.
The total deformation is the sum of a pure deformation, represented by €, and a rigid
body rotation, represented by €. This result is similar to that obtained for the exact finite
strain theory, but here the decomposition is additive rather than multiplicative. Indeed,
here the corresponding small strain stretch and rotation tensors are U =1+¢ and
R =1+, so that

F=RU=1+&g+Q (2.7.7)
Example
Consider the simple shear (c.f. Eqn. 2.2.40)

X, =X, +kX,, X,=X,, X3 =X,

where K is small. The displacement vector is u = kX, e, so that

gradu =

S O O
oS O K
oS o O
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The deformation can be written as the additive decomposition

du=edX+QdX or du=sgdX+mxdX

with
0 k/2 0 0 k/2 0
e=|k/2 0 0f Q=|-k/2 0O O
0 0 0 0 0 0

and o =—(k/2)e,. For the rotation component, one can write

1 k/2 0
R=1+Q=|-k/2 1 0
0 0 1

which, since for small 8, cosé@ = 1, sin& = @, can be seen to be a rotation through an
angle @ =—k /2 (a clockwise rotation).

The principal values of € are +k/2,0 with corresponding principal directions

n, =(1/72)e, +(1/+/2)e,, n, = —(1/+/2)e, + (1/~/2)e, and n, =e,

Thus the simple shear with small displacements consists of a rotation through an angle
k /2 superimposed upon a pure shear with angle k/2, Fig. 2.6.2.

Figure 2.6.2: simple shear

2.7.2 Rotations and Small Strain

Consider now a pure rotation about the X, axis (within the exact finite strain theory),

dx = RdX, with
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cos@ —sind O
R=|sind cosd O (2.7.8)
0 0 1

This rotation does not change the length of line elements dX . According to the small
strain theory, however,

cosf@—1 0 0 0 —sind 0
€= 0 cosd-1 0], Q=|sinf 0 0
0 0 0 0 0 0

which does predict line element length changes, but which can be neglected if 8 is small.
For example, if the rotation is of the order 10~ rad, then ¢,, = &,, =107*. However, if

the rotation is large, the errors will be appreciable; in that case, rigid body rotation
introduces geometrical non-linearities which must be dealt with using the finite
deformation theory.

Thus the small strain theory is restricted to not only the case of small displacement
gradients, but also small rigid body rotations.

2.7.3 Volume Change

An elemental cube with edges of unit length in the directions of the principal axes
deforms into a cube with edges of lengths 1+e¢,,1+¢e,,1+¢,, so the unit change in

volume of the cube is

dv—-dV
dv

=(1+e)i+e,fl+e)-1=¢ +e, +&, +0(2) (2.7.9)

Since second order quantities have already been neglected in introducing the small strain
tensor, they must be neglected here. Hence the increase in volume per unit volume, called
the dilatation (or dilation) is

oV .
v e +e,+e, =¢, =tre=divu| Dilatation (2.7.10)

Since any elemental volume can be constructed out of an infinite number of such
elemental cubes, this result holds for any elemental volume irrespective of shape.

2.7.4 Rate of Deformation, Strain Rate and Spin Tensors

Take now the expressions 2.4.7 for the rate of deformation and spin tensors. Replacing v
in these expressions by u, one has
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. Ou;
d=l(1+1T), dijzl %+_J
2 2 6xj OX:

i ou.
w:l(l—lT) W, :l %__1
2 AN S

For small strains, one can take the time derivative outside (by considering the X; to be

(2.7.11)

material coordinates independent of time):

d |1 8ui auj
di' =—<—| —+ —
bodt|2(ox;  ox

W o 91 ou ouy
Todt|2lox; o,

The rate of deformation in this context is seen to be the rate of strain, d = ¢, and the spin
is seen to be the rate of rotation, w = Q.

(2.7.12)

The instantaneous motion of a material particle can hence be regarded as the sum of three
effects:
(1) a translation given by u (so in the time interval At the particle has been
displaced by uAt)
(i)  apure deformation given by &
(iii)  arigid body rotation given by Q

2.7.5 Compatibility Conditions

Suppose that the strains &;; in a body are known. If the displacements are to be

determined, then the strain-displacement partial differential equations

- ou,
&y = 1hou (2.7.13)
2\ 0x; o

need to be integrated. However, there are six independent strain components but only
three displacement components. This implies that the strains are not independent but are
related in some way. The relations between the strains are called compatibility
conditions, and it can be shown that they are given by

-&

Eijjm T Emjj —€ =0 (2.7.14)

ik, jm im,ik

These are 81 equations, but only six of them are distinct, and these six equations are
necessary and sufficient to evaluate the displacement field.
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2.8 Objectivity and Objective Tensors

2.8.1 Dependence on Observer

Consider a rectangular block of material resting on a circular table. A person stands and
observes the material deform, Fig. 2.8.1a. The dashed lines indicate the undeformed
material whereas the solid line indicates the current state. A second observer is standing
just behind the first, but on a step ladder — this observer sees the material as in 2.8.1b. A
third observer is standing around the table, 45° from the first, and sees the material as in
Fig. 2.8.1c.

The deformation can be described by each observer using concepts like displacement,
velocity, strain and so on.. However, it is clear that the three observers will in general
record different values for these measures, since their perspectives differ.

The goal in what follows is to determine which of the kinematical tensors are in fact
independent of observer. Since the laws of physics describing the response of a
deforming material must be independent of any observer, it is these particular tensors
which will be more readily used in expressions to describe material response.

________

(a) (b) (c)
Figure 2.8.1: a deforming material as seen by different observers

Note that Fig. 2.8.1 can be interpreted in another, equivalent, way. One can imagine one
static observer, but this time with the material moved into three different positions. This
viewpoint will be returned to in the next section.

2.8.2 Change of Reference Frame

Consider two frames of reference, the first consisting of the origin o and the basis {e, },
the second consisting of the origin o~ and the basis {e? }, Fig. 2.8.2. A point x in space is
then identified as having position vector x = X;e; in the first frame and position vector

x =X e, in the second frame.

When the origins 0 and 0" coincide, x = x" and the vector components X, and X; are

related through Eqn. 1.5.3, X, = Q;X], or x = X;e; = Q; X e;, where [Q] is the
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transformation matrix 1.5.4, Q; =e, -e? . Alternatively, one has Eqn. 1.5.5, X; =Q iXjs

* * ok *
or x =X;€ =Q;X;e;.

Figure 2.8.2: two frames of reference
With the shift in origin a=0—-0", one has
x*:xi*eszjixje?+ai*eT (2.8.1)
where a =a/e;. Alternatively,
X = X;e; =Q;Xje; —ae, (2.8.2)

where a = ae;, with a; =Q;a;.

171

Formulae 2.8.1-2 relate the coordinates of the position vector to a point in space as
observed from one frame of reference to the coordinates of the position vector to the same
point as observed from a different frame of reference.

Finally, consider the position vector x, which is defined relative to the frame (o,e;). To

an observer in the frame (0*,e:‘ ), the same position vector would appear as (x)* , Fig.
i

2.8.3. Rotating this vector (x) through Q" (the tensor which rotates the basis {e } nto

the basis {ei }) and adding the vector a then produces x " :

x =Q"(x) +a (2.8.3)

This relation will be discussed further below.
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Figure 2.8.3: Relation between vectors in Eqn. 2.8.3

2.8.3 Change of Observer

The change of frame encompassed by Eqns. 2.8.1-2 is more precisely called a passive
change of frame, and merely involves a transformation between vector components. One
would say that there is one observer but that this observer is using two frames of
reference. Here follows a different concept, an active change of frame, also called a
change in observer, in which there are two observers, each with their own frame of
reference.

An observer is someone who can measure relative positions in space (with a ruler) and
instants of time (with a clock). An event in the physical world (for example a material
particle) is perceived by an observer as occurring at a particular point in space and at a
particular time. One can regard an observer O to be a map of an event E in the physical
world to a point x in point space (cf. §1.2.5) and a real number t. A single event E is

recorded as the pair (x,t) by an observer O and, in general, by a different pair (x* ,t*) by a
second observer O, Fig. 2.8.4.

E

t @) O* o

Figure 2.8.4: recordings by two observers of the same event

Let the two observers record three points corresponding to three events, Fig. 2.8.5. These
points define vectors in space, as the difference between the points (cf. §1.2.5). Itis
assumed that both observers “see” the same Euclidean geometry, that is, if one observer
sees an ellipse, then the other observer will see the same ellipse, but perhaps positioned
differently in space. To ensure that this is so, observed vectors must be related through
some orthogonal tensor Q, for example,

x —x;, =Q(x-x,) (2.8.4)
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since this transformation will automatically preserve distances between points, and angles
between vectors (see §1.10.7), for example,

(Xr _X:;)'(X* _X:;): Q(Xl _Xo)'Q(X_Xo):(X1 _Xo)'(x_xo) (2.8.5)

* * *

XO %
®_*
* * Xl

X —X °
0 *
X

) o
Figure 2.8.5: recordings of two observers of three separate events

Although all orthogonal tensors Q do indeed preserve length and angles, it is taken that
the Q in 2.8.4-5 is proper orthogonal, i.e. a rotation tensor (cf. §1.10.8), so that orientation
is also preserved. Further, it is assumed that Q = Q(t), which expresses the fact that the

observers can move relative to each other over time.

Observers must also agree on time intervals between events. Let an observer O record a
certain event at time t and a second observer O record the same event as occurring at
time t*. Then the times must be related through

Observer Time Transformation (2.8.6)

where « is a constant. If now the observers record a second event as occurring at t; and
t, say,onehas t, —t" =t, —t as required.

The observer transformation 2.8.4 involves the vectors x —x,and x” —x; and as such
does not require the notion of origin or coordinate system; it is an abstract symbolic
notation for an observer transformation. However, an origin o for O and 0" for O” can
be introduced and then the points x,, X, X,, X can be regarded as position vectors in
space, Fig. 2.8.6.

The transformation 2.8.4 can now be expressed in the oft-used format

x =c(t)+Q(t)x| Observer (Spatial) Transformation (2.8.7)

where
c(t) = x, —Q(b)x, (2.8.8)

The transformation 2.8.7 is called a Euclidean transformation, since it preserves the
Euclidean geometry.

Solid Mechanics Part 111 266 Kelly



Section 2.8

Figure 2.8.6: position vectors for two observers of the same events

Coordinate Systems

Each observer can introduce any Cartesian coordinate system, with basis vectors {ei } and

{e:‘} say. They can then resolve the position vectors into vector components. These basis
vectors can be oriented with respect to each other in any way, that is, they will be related
through e; = Re,, where R is any rotation tensor. Indeed, each observer can change their

basis, effecting a coordinate transformation. No attempt to introduce specific coordinate
systems will be made here since they are completely unnecessary to the notion of observer
transformation and would only greatly confuse the issue.

Relationship to Passive Change of Frame

Recall the passive change of frame encompassed in Eqns. 2.8.1-2. If one substitutes the
actual x for (x) in Eqn. 2.8.3, one has:

X =Q'x+a (2.8.9)

This is clearly an observer transformation, relating the position vector as seen by one
observer to the position vector as seen by a second observer, through an orthogonal tensor
and a vector, as in Eqn. 2.8.7. In the passive change of frame, Q; are the components of

the orthogonal tensor Q =e; ® e, , Eqn. 1.10.25, which maps the bases onto each other:

e; = Qe,. Thus the transformation 2.8.1-2 can be defined uniquely by the pair Q and a.

In that sense, the passive change of frame does indeed define an active change of frame,
i.e. a change of observer, through Eqn. 2.8.9. However, the concept of observer discussed
above is the preferred way of defining an observer transformation.

2.8.4  Objective Vectors and Tensors
The observer transformation 2.8.7 encapsulates the different viewpoints observers have of

the physical world. They will see the same objects, but in general they will see these
objects oriented differently and located at different positions. The goal now is to see
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which of the kinematical tensors are independent of these different viewpoints. As a first
step, next is introduced the concept of an objective tensor.

Suppose that different observers are examining a deforming material. In order to describe
the material, the observers take measurements. This will involve measurements of spatial
objects associated with the current configuration, for example the velocity or spin. It will
also involve material objects associated with the reference configuration, for example line
elements in that configuration. It will also involve two-point tensors such as the rotation
or deformation gradient, which are associated with both the current and reference
configurations.

It is assumed that all observers observe the reference configuration to be the same, that is,
they record the same set of points for the material particles in the reference configuration'.
The observers then move relative to each other and their measurements of objects
associated with the current configuration will in general differ. One would expect (want)
different observers to make the same measurement of material objects despite this relative
movement; thus one says that material vectors and tensors are objective (material)
vectors and objective (material) tensors if they remain unchanged under the observer
transformation 2.8.6-7.

A spatial vector u on the other hand is said to be an objective (spatial) vector if it
satisfies the observer transformation (see 2.8.4):>

*

u =Qu| Objectivity Requirement for a Spatial Vector (2.8.10)

for all rotation tensors Q. An objective (spatial) tensor is defined to be one which
transforms an objective vector into an objective vector. Consider a tensor observed as

Tand T" by two different observers. Take an objective vector which is observed as v
and v',andlet u=Tv and u" =T v". Then, for u to be objective,

u =Qu=QTv=QTQ"v’ (2.8.11)

and so the tensor is objective provided

T' =QTQ"| Objectivity Requirement for a Spatial Tensor (2.8.12)

Various identities can be derived; for example, for objective vectors a and b, and
objective tensors A and B, { A Problem 1}

! this does not affect the generality of what follows; the notion of objective tensor is independent of the
chosen reference configuration
? the time transformation 2.8.6 is trivial and does not affect the relations to be derived
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(a- =a -b

(Ab) =AD"

(AB) - A'B' (2.8.13)
(a) =)

(AB) =A'B’

(A:B) =A":B’

For a scalar,

*

¢ =¢| Objectivity Requirement for a Scalar  (2.8.14)

In other words, an objective scalar is one which has the same value to all observers.

Finally, consider a two-point tensor. Such a tensor is said to be objective if it maps an
objective material vector into an objective spatial vector. Consider then a two-point

tensor observed as T and T . Take an objective material vector which is observed as v

and v ,andlet u=Tv and u" =T v'. A material vector is objective if it is unaffected
by an observer transformation, so

u =Qu=QTv=QTv’ (2.8.15)

and so the tensor is objective provided

*

T =QT Objectivity Requirement for a Two-point Tensor (2.8.16)

Thus the objectivity requirement for a two-point tensor is the same as that for a spatial
vector.

2.8.5 Objective Kinematics

Next are examined the various kinematic vectors and tensors introduced in the earlier
sections, and their objectivity status is determined.

The motion is observed by one observer as x = %(X,t) and by a second observer as

x =y(X,t"). The observer transformation gives
Y (X)) =Q)y(X,t)+e(t), t =t+a (2.8.17)

and so the motion is not an objective vector, i.e. 3 # Qy.
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The Velocity and Acceleration

Differentiating 2.8.17 (and using the notation x instead of )'((X,t) for brevity), the
velocity under the observer transformation is

X =Qx+Qx+¢ (2.8.18)
which does not comply with the objectivity requirement for spatial vectors, 2.8.10. In
other words, different observers will measure different magnitudes for the velocity. The

velocity expression can be put in a form similar to that of elementary mechanics (the
“non-objective” terms are on the right),

£ —Qx=0,(x —c)+é (2.8.19)
where
Q,=QQ" (2.8.20)

is skew-symmetric (see Eqn. 1.14.2); this tensor represents the rigid body angular velocity
between the observers (see Eqn. 2.6.1). Note that the velocity is objective provided

Q =0, ¢ =0, for which x" = Q,x+c¢,, which is called a time-independent rigid
transformation.

Similarly, for the acceleration, it can be shown that
£ —Qx =0, (x —¢)-Q2 (x" —¢)+ 29, (x—¢&)+¢ (2.8.21)

The first three terms on the right-hand side are called the Euler acceleration, the
centrifugal acceleration and the Coriolis acceleration respectively. The acceleration is

objective provided ¢ and Q are constant, for which x” = Q x +¢(t) with & =0, which is

called a Galilean transformation — where the two configurations are related by a rigid
rotation and a translational motion with constant velocity.

The Deformation Gradient

Consider the motion x = y(X,t). As mentioned, observers observe the reference

configuration to be the same: X = X. The deformation is then observed as dx = FdX
and dx = F dX, so that

dx" = Qdx = QFdX = QFdX (2.8.22)
and

F' =QF (2.8.23)

and so, according to 2.8.16, the deformation gradient is objective.
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The Cauchy-Green Strain Tensors

For the right and left Cauchy-Green tensors,

C'=F"'F =F'Q'QF=C

(2.8.24)
b"=FF"=QFF'Q" =QbQ"
Thus the material tensor C and the spatial tensor b are objective”.
The Jacobian Determinant
For the Jacobian determinant, using 1.10.16a,
J" =detF’" = det(QF)=detQdetF = detF = J (2.8.25)

and* so is objective according to 2.8.14.
The Rotation and Stretch Tensors

The polar decomposition is F = RU, where R is the orthogonal rotation tensor and U is
the right stretch tensor. Then F* = QF =QRU =R 'U". Since QR is orthogonal, the
expression QRU = R"U" is valid provided

R"=QR, U =U (2.8.26)
Thus the two-point tensor R and the material tensor U are objective.

The Velocity Gradient

Allowing Q to be a function of time, for the velocity gradient, using 2.5.4, 1.9.18c,

1" = F(F*)-l =(QF+QF)F'Q" =QIQ" +Q,, (2.8.27)

where Q,, is the angular velocity tensor 2.8.20. On the other hand, with 1 =d +w, and

separating out the symmetric and skew-symmetric parts,
d'=QdQ", w =QwQ'+Q, (2.8.28)
Thus the velocity gradient is not objective. This is not surprising given that the velocity is

not objective. However, significantly, the rate of deformation, a measure of the rate of
stretching of material, iS objective.

3 Some authors define a second order tensor to be objective only if 2.8.12 is satisfied, regardless of whether
it is spatial, two-point or material; with this definition, F and C would be defined as non-objective
* Note that Q must be a rotation tensor, not just an orthogonal tensor, here
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The Spatial Gradient

Consider the spatial gradient of an objective vector t:

*

gradt :ﬂ, (gradt)* = at* (2.8.29)
ox 0
Since t~ = Qt, the chain rule gives
o _oa o Qg oo (2.830)
0x Ox Ox 10).¢ ox
It follows that
(gradt) = Q?QT (2.8.31)
X

Thus the spatial gradient is objective. In general, it can be shown that the spatial gradient
of a tensor field of order n is objective, for example the gradient of a scalar ¢,

{ AProblem 2} grad¢ . Further, for a vector v, { AProblem 3} divv is objective.

Objective Rates

Consider an objective vector field u. The material derivative u is not objective.

However, the co-rotational derivative, Eqn. 2.6.12, u = —wu iS objective. To show
this, contract 2.8.28b, w* = QwQ" +QQ", to the right with Q to get an expression for

Q:
Q=wQ-Qw (2.8.32)

and then
u'=Qu —> u =Qu+Qui=wQu+Qi—wu)=wQu+Qu (2.8.33)
Then u"—=w'u" =Qu, or (u)” =Qu, so that the co-rotational derivative of a vector is an

objective vector.

Rates of spatial tensors can also be modified in order to construct objective rates. For
example, consider an objective spatial tensor T, so T" = QTQ". Then

T =QTQ" +QTQ" +QTQ" (2.8.34)

which is clearly not objective. However, this can be re-arranged using 2.8.32 into

Solid Mechanics Part 111 272 Kelly



F—W*T* +T'wW = Q(T -wT + waT

and so the quantity

T-wTl+Tw
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(2.8.35)

(2.8.36)

is an objective rate, called the Jaumann rate. Other objective rates of tensors can be
constructed in a similar fashion, for example the Cotter-Rivlin rate, defined by

{ AProblem 4}
T+1"T+TI (2.8.37)
Summary of Objective Kinematic Objects
Table 2.8.1 summarises the objectivity of some important kinematic objects:
objective | definition Type Transformation
Jacobian determinant v Scalar J' =1
Deformation gradient 4 2-point F =QF
Rotation v R=FU'=v''F 2-point R" =QR
Right Cauchy-Green v C=F"F Material | C* =C
strain
Green-Lagrange v E = %(C - 1) Material E' =E
strain
Rate of Green- v Material -
Lagrange strain E =E
Right Stretch v U=+C Material U =U
Left Cauchy-Green v b=FF" Spatial b* =QbQ"
strain
Euler-Almansi strain v e= %(1 - b*l) Spatial e =QeQ’
Left Stretch v v=4+b Spatial v =QvQ"
Spatial Velocity X 1 =gradv Spatial 1"=QIQ" +QQ"
Gradient
Rate of Deformation v d= %(1 + ]T) Spatial d =QdQ"
Spin X w :%(1_1T) Spatial w =QwQ" +QQ"
Table 2.8.1: Objective kinematic objects
2.8.6  Objective Functions

In a similar way, functions are defined to be objective as follows:

e A scalar-valued function ¢ of, for example, a tensor A, is objective if it

transforms in the same way as an objective scalar,
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' (A)=g(A) (2.8.38)

e A (spatial) vector-valued function a of a tensor A is objective if it transforms in
the same way as an objective vector

v (A) = Qv(A) (2.8.39)

e A (spatial) tensor-valued function f of a tensor A is objective if it transforms
according to

f'(A) = Qf(A)Q" (2.8.40)
Objective functions of the Deformation Gradient

Consider an objective scalar-valued function ¢ of the deformation gradient F, ¢(F). The
function is objective if ¢ = ¢(F). But also,

4 = ¢(F")=¢(QF) (2.8.41)

Using the polar decomposition theorem, ¢(RU) = ¢(QRU). Choosing the particular
rigid-body rotation Q = R" then leads to

#(RU)=¢(U) (2.8.42)
which leads to the reduced form
#(F)=¢(U) (2.8.43)

Thus for the scalar function ¢ to be objective, it must be independent of the rotational

part of F, and depends only on the stretching part; it cannot be a function of the nine
independent components of the deformation gradient, but only of the six independent
components of the right stretch tensor.

Consider next an objective (spatial) tensor-valued function f of the deformation gradient
F, f(F). According to the definition of objectivity of a second order tensor, 2.8.12:

f" =Qf (F)Q" (2.8.44)

But also,

*

' =f(F")=f(QF) (2.8.45)

Again, using the polar decomposition theorem and choosing the particular rigid-body
rotation Q = R" leads to

f(U)=R"f(RU)R (2.8.46)
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which leads to the reduced form
f(F)=Rf(U)R" (2.8.47)

Thus for f to be objective, its dependence on F must be through an arbitrary function of U
together with a more explicit dependence on R, the rotation tensor

Example
Consider the tensor function f(F) = oz(FFT )2 . Then

£(QF) = a[(QF)QF)' [ = Qa[FF' [ Q" = Qf(F)Q"

and so the objectivity requirement is satisfied. According to the above, then, one can
evaluate f(U)=R"f(RU)R = ()((UUT )2 , and the reduced form is

f =Ra(UUTfR" = aRU*R”
Also, since C = U’ and E = 1(C-1I), alternative reduced forms are

f =Rf,(C)R", f=Rf,(ER"

]
Finally, consider a spatial tensor function f of a material tensor T. Then
f(T)=Qf(T)Q", f (T)=1f(T")=1(T) (2.8.48)
It follows that
f=QfQ" (2.8.49)

This is true only in the special case Q =1 and so is not true in general. It follows that the
function f is not objective.

2.8.7 Problems

1. Derive the relations 2.8.13
Show that the spatial gradient of a scalar ¢ is objective.

3. Show that the divergence of a spatial vector v is objective. [Hint: use the definition
1.11.9 and identity 1.9.10¢]

4. Verify that the Rivlin-Cotter rate of a tensor T, T+1"T + T1, is objective.
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2.9 Rigid Body Rotations of Configurations

In this section are discussed rigid body rotations to the current and reference
configurations.

2.9.1 A Rigid Body Rotation of the Current Configuration

As mentioned in 82.8.1, the circumstance of two observers, moving relative to each other
and examining a fixed configuration (the current configuration) is equivalent to one
observer taking measurements of two different configurations, moving relative to each
other’. The objectivity requirements of the various kinematic objects discussed in the
previous section can thus also be examined by considering rigid body rotations and
translations of the current configuration.

Any rigid body rotation and translation of the current configuration can be expressed in
the form

X" (X,t) = Q(t)x(X,t)+c(t) (2.9.1)

where Q is a rotation tensor. This is illustrated in Fig. 2.9.5. The current configuration is
denoted by S and the rotated configuration by S”.

Just as dx = FdX , the deformation gradient for the configuration S relative to the
reference configuration S, is defined through dx™ = F dX. From 2.9.1, as in §2.8.5 (see
Egn. 2.8.23), and similarly for the right and left Cauchy-Green tensors,

F' =QF
C'=F'F =C (2.9.2)
b"=FF T =QbQ’

Thus in the deformations F:S, — S and F :S, — S, the right Cauchy Green tensors,

C and C’, are the same, but the left Cauchy Green tensors are different, and related
through b" =QbQ".

All the other results obtained in the last section in the context of observer transformations,
for example for the Jacobian, stretch tensors, etc., hold also for the case of rotations to the
current configuration.

! Although equivalent, there is a difference: in one, there are two observers who record one event (a material
particle say) as at two different points, in the other there is one observer who records two different events
(the place where the one material particle is in two different configurations)
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reference
/ configuration

Figure 2.9.1: a rigid body rotation and translation of the current configuration

2.9.2 A Rigid Body Rotation of the Reference Configuration

Consider now a rigid-body rotation to the reference configuration. Such rotations play an
important role in the notion of material symmetry (see Chapter 5).

The reference configuration is denoted by S, and the rotated/translated configuration by

S?, Fig. 2.9.2. The deformation gradient for the current configuration S relative to S° is
defined through dx = F°dX® = F°QdX. But dx = FdX and so (and similarly for the
right and left Cauchy-Green tensors)

F'=FQ’
C’=F°TF’ =QCQ’ (2.9.3)
b =F°F°T =b

Thus the change to the right (left) Cauchy-Green strain tensor under a rotation to the
reference configuration is the same as the change to the left (right) Cauchy-Green strain
tensor under a rotation of the current configuration.
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N - reference
N - configuration

Figure 2.9.2: a rigid body rotation of the reference configuration
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2.10 Convected Coordinates

An introduction to curvilinear coordinate was given in section 1.16, which serves as an
introduction to this section. As mentioned there, the formulation of almost all mechanics
problems, and their numerical implementation and solution, can be achieved using a
description of the problem in terms of Cartesian coordinates. However, use of curvilinear
coordinates allows for a deeper insight into a number of important concepts and aspects of, in
particular, large strain mechanics problems. These include the notions of the Push Forward
operation, Lie derivatives and objective rates.

As will become clear, note that all the tensor relations expressed in symbolic notation already
discussed, such as U = \/E , FNi =An,, F =1F, etc., are independent of coordinate system,
and hold also for the convected coordinates discussed here.

2.10.1 Convected Coordinates

In the Cartesian system, orthogonal coordinates X ' X' were used. Here, introduce the

curvilinear coordinates ®'. The material coordinates can then be written as

X =X(0'0°0% (2.10.1)
so X=X'E, and

dX =dX'E, =dO'G,, (2.10.2)

where G, are the covariant base vectors in the reference configuration, with corresponding

contravariant base vectors G', Fig. 2.10.1, with

G' -G, =4 (2.10.3)
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current
configuration

reference
configuration

Figure 2.10.1: Curvilinear Coordinates

The coordinate curves form a net in the undeformed configuration (over the surfaces of

constant ®'). One says that the curvilinear coordinates are convected or embedded, that is,
the coordinate curves are attached to material particles and deform with the body, so that

each material particle has the same values of the coordinates ®' in both the reference and
current configurations. The covariant base vectors are tangent the coordinate curves.

In the current configuration, the spatial coordinates can be expressed in terms of a new,
“current”, set of curvilinear coordinates

x=x(0',0%,0°1), (2.10.4)
with corresponding covariant base vectors g, and contravariant base vectors g', with
dx=dx'e, =dO'g, (2.10.5)

As the material deforms, the covariant base vectors g, deform with the body, being

“attached” to the body. However, note that the contravariant base vectors g' are not as such
attached; they have to be re-evaluated at each step of the deformation anew, so as to ensure
that the relevant relations, e.g. g' - g | = 5} , are always satisfied.

Example 1

Consider a pure shear deformation, where a square deforms into a parallelogram, as
illustrated in Fig. 2.10.2. In this scenario, a unit vector E, in the “square” gets mapped to a

vector g, in the parallelogram'. The magnitude of g, is 1/sine .

! This differs from the example worked through in section 1.16; there, the vector g, maintained unit magnitude.
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Y.

S A

E, g

Figure 2.10.2: A pure shear deformation

Consider now a parallelogram (initial condition) deforming into a new parallelogram (the
current configuration), as shown in Fig. 2.10.3.

g }/‘
E,e A

El’el

Figure 2.10.3: A pure shear deformation of one parallelogram into another

Keeping in mind that the vector g, will be of magnitude 1/sin« , the transformation
equations 2.10.1 for the configurations shown in Fig. 2.10.3 are?

Q' =X"- Ly @’=X*, =X’

tan ’ ’
X'=0'+ ®’, X*=0°, X’'=0’

tana

(2.10.6)

@lle_ 1 XZ, @2:X2, @3:X3

tan S
xX'=0'+ ! e, x*=0%, x'=06°

tan S

2 Constants have been omitted from these expressions (which represent the translation of the “parallelogram
origin” from the Cartesian origin).
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Following on from §1.16, Eqns. 1.16.19, the covariant base vectors are:

G, Zax. E., G, =E, G,= ! E +E, G;=E,
00 tan
(2.10.7)
oxX "™ 1
g = 20 €ns g =¢ 8= tan,Bel te€, g; =6,

and the inverse expressions

1
G +G,, E, =G,

E =G, E, =-
: : ’  tana (2.10.8)
) .10.
¢, =g, ez:_tanﬂgl+g2’ €, =8;

Line elements in the configurations can now be expressed as

dX =dX'E, X o - do'G,
00’
d"i d0' =d@'g,

dx =dx'e;, =—
00

(2.10.9)

The scale factors, i.e. the magnitudes of the covariant base vectors, are (see Eqns. 1.16.36)

H, =|G,|=1, H2:|G2|:Sina
i (2.10.10)
h, :|g1| =1, h, :|g2| = sin 3

The contravariant base vectors are (see Eqn. 1.16.23)

G‘:;?mEm, GI:EI—%EP G’=E,, G’=E,
. ana (2.10.11)
i a@l 1 1 2 3
=€ - €, g =€, g =¢

=——e,, =e
& ox™ " & =4 tan S

and the inverse expressions
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E =G'+ ! G’, E,=G’, E,=G’
taln‘” (2.10.12)
e =g + g, e, =g, e, =g

tan

The magnitudes of the contravariant base vectors, are

le‘G“z —, HZZ‘G2‘21
e (2.10.13)
hl — 1 — , h2 — 2 :1
o=l el
The metric coefficients are (see Eqns. 1.16.27)
| 1 0 . 12 1 0
tan o sin” « tan o
1 1 . : . 1
Gij—Gi-GJ: — 0, G'=G'-G'=|- 1 0
tana s« tan o
0 0 1 0 0 1
_ 1 : - C . ! O- (2.10.14)
tan S sin’ 8 tan
1 1 i P 1
ij —8i 8j s = = - 1 0
Ji =88, tan B sin’ S °=2-8 tan
0 0 1 0 0 1

The transformation determinants are (consistent with zero volume change), from Eqns.
1.16.32-34,

1 oX'
G =det[G; | =W=[de{ﬁD =Ja =1

(2.10.15)
1 X' R
R R G
|
Kelly
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Example 2

Consider a motion whereby a cube of material, with sides of length L, is transformed into a
cylinder of radius R and height H , Fig. 2.10.4.

%I "

2L,

Figure 2.10.4: a cube deformed into a cylinder
A plane view of one quarter of the cube and cylinder are shown in Fig. 2.10.5.

2

X2 X

Figure 2.10.5: a cube deformed into a cylinder

The motion and inverse motion are given by

J_2R (XY
N IR
2R X'X?
x = y(X), X' ="= (basis: e;) (2.10.16)
(X (xf
X} = H X3
LO
and
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2R
L,
X=y'(x), X’= 2RX (x'V +(x2f  (basis: E;) (2.10.17)
X3:ix3
H

Introducing a set of convected coordinates, Fig. 2.10.6, the material and spatial coordinates

are
_[Lle
2R

L

X=X(0',0%,0%), X? = ﬁj@%an@z (2.10.18)
X 3 — 56)3
H
and (these are simply cylindrical coordinates)
X' =0'cos®’

x=x(0',0%,0%), x> =0'sin®’ (2.10.19)

X’ =0’

A typical material particle (denoted by p) is shown in Fig. 2.10.6. Note that the position
vectors for p have the same ©' values, since they represent the same material particle.

X
2
X, o’ _7
4
i 2 2
: ’,’ @ \\ - @
1_- \ -~
.-*p (-
e 1 A 1
s 1 X I~o 1
R~ ! 1 BT X
S 1 1 S
‘\\| 7 S<
(RS
T o'
1
G)l
1
® =R

Figure 2.10.6: curvilinear coordinate curves
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2.10.2 The Deformation Gradient

With convected curvilinear coordinates, the deformation gradient is

F=g ®G'

=g, ®G'+g,®G’ +g,®G’, (2.10.20)
1 00

01 0| (59G')

00 1

The deformation gradient operates on a material vector (with contravariant components)
V =V'G,, resulting in a spatial tensor v =V'g, (with the same components V =V"), for

example,
FdX = (g ®G')d0'G; =d@'g, = dx (2.10.21)

To emphasise the point, line elements mapped between the configurations have the same
coordinates @': a line element d®'G, + d®°G, + d®’G, gets mapped to

(2,®G'+g,®G’ +g,®G’)(dO'G, +dO’G, + 1O’G, ) = dO'g, + dO’g, + dO’g,
(2.10.22)

This shows also that line elements tangent to the coordinate curves are mapped to new
elements tangent to the new coordinate curves; the covariant base vectors G, are a field of

tangent vectors which get mapped to the new field of tangent vectors g;, as illustrated in Fig.
2.10.7.

Figure 2.10.7: Vectors tangent to coordinate curves
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The deformation gradient F, the transpose F' and the inverses F~', F~", map the base

vectors in one configuration onto the base vectors in the other configuration (that the F~' and
F " in this equation are indeed the inverses of F and F' follows from 1.16.63):

F=g ®G' FG, =g,

F'=G,®¢g F'g =G,
_ > o : Deformation Gradient (2.10.23)

F—T :gl ®G| F7 GI :gl

FT =GI ®g| FTgI :GI

Thus the tensors F and F™' map the covariant base vectors into each other, whereas the

tensors F~' and F' map the contravariant base vectors into each other, as illustrated in Fig.
2.10.8.

contravariant basis

covariant basis VF/

F—l

Figure 2.10.8: the deformation gradient, its transpose and the inverses

It was mentioned above how the deformation gradient maps base vectors tangential to the
coordinate curves into new vectors tangential to the coordinate curves in the current
configuration. In the same way, contravariant base vectors, which are normal to coordinate
surfaces, get mapped to normal vectors in the current configuration. For example, the

contravariant vector G' is normal to the surface of constant @', and gets mapped through
F~' to the new vector g', which is normal to the surface of constant @' in the current
configuration.
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Example 1 continued

Carrying on Example 1 from above, in Cartesian coordinates, 4 corners of an initial
parallelogram (see Fig. 2.10.3) get mapped as follows:

(0,0) —(0,0)
1,0 L0
(1.0)>(1.0) (2.10.24)
(1 / tana,l) - (1 / tan,b’,l)
(1+ 1/ tana,l) - (1+ 1/ tanﬂ,l)
This corresponds to a deformation gradient with respect to the Cartesian bases:
1 II
F{O 1} (E,®F,).(e; ®¢;) (2.10.25)
where
IT ! ! (2.10.26)

- tan f tana

From the earlier work with example 1, the deformation gradient can be re-expressed in terms
of different base vectors:

F=(E, ®F,)+I1(E,®F,)+(E, ®F,)
(e, ®E,)+TII(e, ®E,)+(e, ®F,)

:gl®(Gl+$G2]+H(gl®G2)+(—ﬁgl+gzj®G2 (2.1027)
100

=g, ®G'=0 1 0|(g®G’)
00 1

which is Eqn. 2.10.20.

In fact, F can be expressed in a multitude of different ways, depending on which base vectors
are used. For example, from the above, F can also be expressed as
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F=(E ®E,)+II(E, ®F,)+(E,®E,)

g+t G2j®(G1+LG2j+HKGI+ ! G2j®(G2)}+[G2®G2]
tan o

tan o tana
1 1
tan
1 1 1 i -
= 0/(G'®G’)
tana tano tan S
0 0 1

(2.10.28)

(This can be verified using Eqn. 2.10.30a below.)

Components of F

The various components of F and its inverses and the transposes, with respect to the different
bases, are:

F=F,G' ®G’'=F'G,®G,=F’'G'®G, =F|G,®G'

=f,g' ®g' =1'g, ®g, =f'g ®g; =1jg ®g’
F')c¢'®c' =(F')G &G, =(F')¢'®G,=(F'),G, ®G’
:(f_l)ijgi®g- :(f_l)ijgi®gj :(f_l)}jgi@)gj :(f_l):ijgi®gj

F—l

F'=(F"),¢'®G' =(F')'G,®G,=(F')'6' ®G, = (F')|G, ®G’
:(fT)ijgi®g- :(fT)ijgi®gj :(fT)}jgi®gj :(fT):ijgi®gj
F)e 86 -( V6,06, - (F )6 06, - (F 7.6, 06
(f_T)ijgi®gj z(f_T)ijgi®gj =(f_T)‘ijgi®gj :(f_T):ijgi®gj

FfT

(2.10.29)

The components of F with respect to the reference bases {Gi }, {G } are
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F, =G FG, =G, g, = =%
00' 00’
F'=G'FG' =G*G' g,
4 : . (2.10.30)
F’=GFG’'=G*G, g,
F'=G'FG, =G' g, =2 &
oX"™ 00’
and similarly for the components with respect to the current bases.
Components of the Base Vectors in different Bases
The base vectors themselves can be expressed alternately:
g, =FG, =F,(G"®G!)G, =F"(G,®G'G,
=F,G"5/ =F!G,05] (2.10.31)

=F,G" =F"G,

showing that some of the components of the deformation gradient can be viewed also as
components of the base vectors. Similarly,

m

G, =F'g :(fil )migm :(fil)i gm (2.10.32)

For the contravariant base vectors, one has

¢ =F'G' =(F")"(G,®G,)6'=(F")(G"®G, )G’

-(F")"G,s' —(F")lG"s! (2.10.33)
T -l

and
G =F'g' =(t")"g, =(f" ). g" (2.10.34)

2.10.3 Reduction to Material and Spatial Coordinates

Material Coordinates

Suppose that the material coordinates X' with Cartesian basis are used (rather than the
convected coordinates with curvilinear basis G), Fig. 2.10.9. Then
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j j j j
Gi:aXiEjzaxiEj:Ei gi:aiiej:aiiej
O - X', 00 X' , 00 1 oX!
00 g K g g g 09 X
ox! ox! ox? ox’?
and
. . i .
F-g ®G =g QF' =%ej ®E' = Gradx
F'=G,®g' =E, Qg =%Ei ®e’ = gradX
X

Section 2.10

(2.10.35)

(2.10.36)

which are Eqns. 2.2.2, 2.2.4. Thus Gradx is the notation for F and gradX is the notation for

F', to be used when the material coordinates X, are used to describe the deformation.

reference current
configuration configuration

R

X3

Figure 2.10.9: Material coordinates and deformed basis

Spatial Coordinates

Similarly, when the spatial coordinates X' are to be used as independent variables, then

j j i j
Gi:aXiEi:aXi E, gi:aiiej:aiiej:e_
O - X, 00 ox 00 OX’
G = gi- X g gi=ﬂej=a—x.ej=e
oX ! oX ! ox! ox’
and
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F=g ®G =¢, ®G' = axj e, ®E! = Gradx
x (2.10.38)
F'=G,®g =G, ®¢' = axi E, ®e' =gradX

The descriptions are illustrated in Fig. 2.10.10. Note that the base vectors G,, g; are not the
same in each of these cases (curvilinear, material and spatial).

>

F=g ®G'
g g,
— T
g
V X]
‘\/
F'=G,®¢g
XZ
2
i _ ‘a X,
F = X e, ®E’ = Gradx
ox!

_ox!

e
F' - —E, ®e’ = gradX X a
X

Figure 2.10.10: deformation described using different independent variables
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2.10.4 Strain Tensors
The Cauchy-Green tensors

The right Cauchy-Green tensor C and the left Cauchy-Green tensor b are defined by Eqns.
2.2.10,2.2.13,

C=F'F =(G'®g g, ®G!

)=9,G'®G’' =C,G' ®G!
C'=F'F'=(G,®g g’ ®G,)-

)=6

)=

9'G,®G,=(c") G, ®G
IJgi ®g; Ebljgi ®g;
G,g' ®g' =b") g ®g!

1 (2.10.39)
b=FF' =(g ®G')G' ®g,

T-F'F'=(g'®G,)G, ®g’

Thus the covariant components of the right Cauchy-Green tensor are the metric coefficients
g;; - This highlights the importance of C: the g; =g; -g; give a clear measure of the

deformation occurring. (It is possible to evaluate other components of C, e.g. C", and also
its components with respect to the current basis, but only the components C; with respect to

the reference basis are (normally) used in the analysis.)
The Stretch

Now, analogous to 2.2.9, 2.2.12,

ds? = dx - dx = dXCdX

(2.10.40)
dS* = dX-dX = dxb'dx
so that the stretches are, analogous to 2.2.17,
2

205 XX gkedk > dXicydX

ds®  |dx| |dX]

iS5 d i (2.10.41)
: Xp' X _dibldk > dR'(b),di’

2 dst iy oy
The Green-Lagrange and Euler-Almansi Tensors

The Green-Lagrange strain tensor E and the Euler-Almansi strain tensor e are defined
through 2.2.22,2.2.24,
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2 _ 2
957 =857 _ gx L (c - 1)dx = dXEdX
" 2d52 12 (2.10.42)
% = de(I —b™ )dx = dxedx

The components of E and e can be evaluated through (writing G =1, the identity tensor
expressed in terms of the base vectors in the reference configuration, and g =1, the identity

tensor expressed in terms of the base vectors in the current configuration)

E:%(C_G):%(gijGi ®G’ -GG’ ®Gj):%(9u‘ -G, )6' ®G' =E,G' ®G’
e:%(g_b_l):%(gijgi ®g’ _Gijgi ®gj):%(gij _Gij)gi ®g’ Eeijgi ®g

(2.10.43)

Note that the components of E and e with respect to their bases are equal, E; =¢; (although

this is not true regarding their other components, e.g. E" = e").
Example 1 continued

Carrying on Example 1 from above, consider now an example vector

_| W 2.10.44
V=l (E;) (2.10.44)

y

The contravariant and covariant components are

VoL y Vi
V=" tana '| (G,), V=| 1 (G") (2.10.45)
V, +V
Vv, tan y

The magnitude of the vector can be calculated through (see Eqn. 1.16.52 and 1.16.49)
E; E
V| =VV-V = N2 +V]
G, G, _ \Vj ? V
=\VV.V = IGV'V’ :\/(VX - j G, +2(VX - JVyG12 +Vy2G22 (2.10.46)

tano tano

¢ G Vv Vv ’
=\V-V =[GV, = [VG" +2V ( _+V jG12+(—X+V j G*
t \/ X “\tana y tano Y
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The new vector is obtained from the deformation gradient:

s 1 1V, 'V, +11V, )
0 1]V, L v, ( |
i 2.10.47
Gi 1 O||v, -——2 V, - ! v, ( )
=FV = tana | = tana "’ |(g;)
0 1
B v, L v,

In terms of the contravariant vectors:
V, +11V,

V=il ! VX+(1+

tan

y

| 2.10.48
nly, €] (21049

tan

Note that the contravariant components do not change with the deformation, but the covariant
components do in general change with the deformation.

The magnitudes of the vectors before and after deformation are given by the Cauchy-Green

strain tensors, whose coefficients are those of the metric tensors (the first of these is the same
as 2.10.46)

i g 8 g g &i
V-V=F'v.F'v=vF 'F'v=vb'v=V'g G g ®g'V'g =G, 'V’
. L (2.10.49)

G; G; G;

Gi G G . ) .
v-v=FV.FV=VF'FV=VCV =V‘G,g,G' ®GV'G, =g,V V'
From this, the magnitude of the vector after deformation is

vy = Jo vV = (v 47 )+ 1Y, (2v, + 11V, ) (2.10.50)

2.10.5 Intermediate Configurations
Stretch and Rotation Tensors

The polar decompositions F = RU = vR have been described in §2.2.5. The decompositions
are illustrated in Fig. 2.10.11. In the material decomposition, the material is first stretched by
U and then rotated by R. Let the base vectors in the associated intermediate configuration be
{gi } Similarly, in the spatial decomposition, the material is first rotated by R and then

stretched by v. Let the base vectors in the associated intermediate configuration in this case
be {G,}. Then, analogous to Eqn. 2.10.23, { AProblem 1}
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R {Ai} \%
/’

Figure 2.10.11: the material and spatial polar decompositions

UG, =g

N Uilgi =G,
UG =6

UTgi -G

Véi =8

N Vﬁlgi :éi
V—Téi :gi

VTgi :éi

—

{gi}

Note that U and v symmetric, U=U", v=v', so

U=§ QG =G'®g,
U'=G,®§ =§'®G,

V=g, ®G' =G dg;
V_1 =éi ®g| =gi ®él

5 UG, =g, Ug =G!'
U—lgI :GI, U—IGI gl
vG. =g, vg' =G'

N i —8i g

Similarly, for the rotation tensor, with R orthogonal, R™' =R",

R=G, ®G =G' ®G,
R'=G, ®G' =G' ®G,

R=g, ®gi :gi ®g;
R’ =g, ®gi :gi ®g;

Solid Mechanics Part 111

S RG, =G,, RG' =G
R'G, =G,, R'G'=G'
Rg =g, Rg' =¢
9 T _ A T 1 _ Al
R'g =g, Rg=¢g
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(2.10.51)

(2.10.52)

(2.10.53)

(2.10.54)

(2.10.55)

(2.10.56)
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The above relations can be checked using Eqns. 2.10.23 and F=RU, F=vR, v'' =RF ',

etc.

Various relations between the base vectors can be derived, for example,

éi'gj

o

o O

i'8

g =
.gj =

(RGi)'(jo):GiRTjo :Gi 'éj

]

=G'.
=G'.

> <> >

=G,-

Deformation Gradient Relationship between Bases

(2.10.57)

The various base vectors are related above through the stretch and rotation tensors. The
intermediate bases are related directly through the deformation gradient. For example, from

2.10.53a, 2.10.55b,

In the same way,

Tensor Components

¢ =UG, =UR'G, =F'G,

gi :FTéi
gi :Ffléi
éi :FiTg|
G' =Fg'

The stretch and rotation tensors can be decomposed along any of the bases
natural bases would be {G,} and {Gi }‘, for example,

U=U;G'®G’, U;=G,UG, =G, g
U=U"'G,®G,, U'=G'UG'=G"G’ g,
U=U'G,®G’', U, =G'UG,=G" g,
U=U/'G'®G,, U’'=G,UG'=§,-G’

with U, =U;,U" =U", U}, =U{,U; =U. One also has
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i j ! é 'gm
A . (2.10.61)
v=V.G, ®G', V. =G'VG,=G' ¢,
v=v/G' ®G,, v/ =GvG' =g, -G’
with similar symmetry. Also,
U= g e, U =gU's =G, g
v =g 08, L) =guig=g"G, ¢’
NI N mien (2.10.62)
u't=ugeg, L) =gug g6,
vl=0) g e, L) =g -6 g
and
. :(V_l)ugl ®g’, (V_l)u :giv_lgj :éu g
vi=(')gog,. (') =g'vig =g"G, ¢
_ (2.10.63)

with similar symmetry. Note that, comparing 2.10.60a, 2.10.61a, 2.10.62a, 2.10.63a and
using 2.10.57,

U=U,G' ®G’
v=v,G' ®G! ) )
U’ :J(U _l)ijgi ®gj Uij =(U 1)ij =V :(V 1)” (2.10.64)

vi= (V_l)ijgi ®g’

Now note that rotations preserve vectors lengths and, in particular, preserve the metric, i.e.,

A

G, =G, G,
;=88 = G =gi'gj

G, =G, G,

(2.10.65)

Thus, again using 2.10.57, and 2.10.60-2.10.63, the contravariant components of the above
tensors are also equal, UY = (U - )“ =vi = (V_1 )” .
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As mentioned, the tensors can be decomposed along other bases, for example,

v=vig ®g, Vi=g'vg'=G' g (2.10.66)

2.10.6 Eigenvectors and Eigenvalues
Analogous to §2.2.5, the eigenvalues of C are determined from the eigenvalue problem
det(C—2.I)=0 (2.10.67)
leading to the characteristic equation 1.11.5
Ao =1 g + A~ =0 (2.10.68)
with principal scalar invariants 1.11.6-7

I =trC=A =g + e, + ey
M. = 1[(trC)> - tr(C€?)] = 1(CIC) = CIC) )= A ey + Aerdes + Aesder (2.10.69)
I =detC = ‘C"ij|<C1iC2jC3k = AciAcades

The eigenvectors are the principal material directions Ni , with

(C-AIN, =0 (2.10.70)

The spectral decomposition is then

(2.10.71)

where A, = A7 and the A, are the stretches. The remaining spectral decompositions in

2.2.37 hold also. Note also that the rotation tensor in terms of principal directions is (see
2.2.35)

(2.10.72)

where n; are the spatial principal directions.
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2.10.7 Displacement and Displacement Gradients

Consider the displacement u of a material particle. This can be written in terms of covariant
components U, and u;:

u=x-X=UG'=ug'. (2.10.73)

The covariant derivative of u can be expressed as

ou
—=U_|G" = g 2.10.74
a@l m|| um|||g ( )

The single line refers to covariant differentiation with respect to the undeformed basis, i.e.
the Christoffel symbols to use are functions of the G;;. The double line refers to covariant

differentiation with respect to the deformed basis, i.e. the Christoffel symbols to use are
functions of the g;; .

Alternatively, the covariant derivative can be expressed as

u _ox X _,_g (2.10.75)
00 00 00
and so
g =G, +U,[G"=[s5" +u"| k5, =F"G,

(2.10.76)

The last equalities following from 2.10.31-32.

The components of the Green-Lagrange and Euler-Almansi strain tensors 2.10.43 can be
written in terms of displacements using relations 2.10.76 { A Problem 2} :

)
)

In terms of spatial coordinates, ®' = X', G, =E,, g, =(6xj /8Xi)ej, Ui|,— =0U, /0X ', the

1
Eij za(gij _Gij)zé(uih +UJ’L +Un|iUn

(2.10.77)

1 1 n
&; =§(9ij _Gij) E(Ui”j +UJHi —U,[,u

components of the Euler-Lagrange strain tensor are
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m n ) aU
Eij :l(gij _Gij):l aX i aL'5mn _5ij :l aUI- + J +6Ui.( aUk. (2.10.78)
2 2{ oX' oX! 2{oX?  oX' oX'oXx!

which is 2.2.46.

2.10.8 The Deformation of Area and Volume Elements

Differential Volume Element

Consider a differential volume element formed by the elements d®'G; in the undeformed
configuration, Eqn. 1.16.43:

dV =+/Gde'de’de’ (2.10.79)
where, Eqn. 1.16.31,1.16.34,
ﬁzm, G, =G, G, (2.10.80)

The same volume element in the deformed configuration is determined by the elements
do'g; :

dv = /gd®'de*de’ (2.10.81)

where

\/Ezw/dedgij |a g; =8 8; (2.8.82)

From 1.16.53 et seq., 2.10.11,
Jo=g g xg,
=F,FJF{G,-G,xG,
= FIFJFfe, G
:\/adetF

where &, is the Cartesian permutation symbol, and so the Jacobian determinant is (see
2.2.53)

(2.10.83)

J =ﬂ=ﬂ=detF (2.10.84)
v VG
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and detF is the determinant of the matrix with components F; .

Differential Area Element

Consider a differential surface (parallelogram) element in the undeformed configuration,

bounded by two vector elements dX® and dX®, and with unit normal N . Then the vector
normal to the surface element and with magnitude equal to the area of the surface is, using
1.16.54, given by

NdS =dX" xdX? =d®"'G, xdO?IG , =e!IdeV'de®IG*  (2.10.85)

where ei(jf) is the permutation symbol associated with the basis G,, i.e.

el¥) =£,G, -G, xG, = ,G. (2.10.86)
Using G* =F"g*, one has
NdS = £, /GdO"'dO?F"g" (2.10.87)

Similarly, the surface vector in the deformed configuration with unit normal n is

iids = dx x dx® = d@"'g, xd®?g, =e¥dO"'dO " (2.10.88)
where ei(jﬁ) is the permutation symbol associated with the basis g, , i.e.
el =g, 8 g, xg, = £y0 - (2.10.89)

Comparing the two expressions for the areas in the undeformed and deformed configurations,
2.10.87-88, one finds that

fids = \/gFTNdS = (det F)F "NdS (2.10.90)

which is Nanson’s relation, Eqn. 2.2.59. This is consistent with was said earlier in relation to

Fig. 2.10.8 and the contravariant bases: F~' maps vectors normal to the coordinate curves in
the initial configuration into corresponding vectors normal to the coordinate curves in the
current configuration.
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2.10.9 Problems

1. Derive the relations 2.10.51.
2. Userelations 2.10.76, with g; =g, -g; and G; =G, -G, to derive 2.10.77

)
)

E; :%(gij _Gij):%(uih +Uj‘i JrUn|iUn

1 1 n
ey =2 (0 -6y )= luf +u ], -,
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Convected Coordinates: Time Rates of Change

In this section, the time derivatives of kinematic tensors described in 82.4-2.6 are now
described using convected coordinates.

2.11.1 Deformation Rates

Time Derivatives of the Base Vectors and the Deformation Gradient

The material time derivatives of the material base vectors are zero: G, =G' =0. The
material time derivatives of the deformed base vectors are, from 2.10.23, (and using
I =d(FF*)/dt=FF"+FF")

g, = FGi = FFilgi :_FFilgi

L . o (2.11.1)
gl — FfTGI — FfTFTgI — _FfTFTgI
with, again from 2.10.23,
F=9,®G'
F'=G, ®¢'
: . (2.11.2)
FT=¢'®G,
F'=G'®g,
The Velocity Gradient
The velocity gradient is defined by 2.5.2, | =grad v, so that, using 1.16.23,
_ i _ _
=NV gei o N O i L N gy (2.11.3)
ox ox' 00’ ox' 00’
Also, from 1.16.19,
OX oV
= = 2.114
Y% e ( )
so that, as an alternative to 2.11.3,
=9, ®¢' (2.11.5)

The components of the spatial velocity gradient are
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li =9ilg; =9; -9,
I' =d'lg. =g’ -g.
i g g,_ g _g, | ) (2.11.6)
I’ =9l9’ =9™g;-9, =9;-9’
I"=g'lg’ =g ¢’
Convected Bases
From 2.11.1, 2.11.2 and 2.11.5,
5 :I ) A :—IT i
g Q.T g i9 (2.11.7)
=gl =-g'l
Contracting the first of these with d®' leads to
9,d®' =1g,de' (2.11.8)

which is equivalent to 2.5.1, dv = ldx.
Time Derivatives of the Deformation Gradient in terms of the Velocity Gradient

Egns. 2.11.2 can also be re-expressed using Eqgns. 2.11.7:

F=9,®G =gl"®G' =g, ®G' =IF
F'=G, ®¢' =-G,®g'l =—F I
FT=0'®G,=-¢1®G,=-1"g'®G, =-I"F T
F=G'®g,=G'®g,|"=F'I"

(2.11.9)

which are Eqgns. 2.5.4-5.

An alternative way of arriving at Eqns. 2.11.7 is to start with Egns. 2.11.9: the covariant base
vectors G, convect to gi(t) over time through the time-dependent deformation gradient:

g;(t)=F(t)G,. For this relation to hold at all times, one must have, from Eqn. 2.11.9b,

+F7g, (2.11.10)

Thus, in order to maintain the convection of the tangent basis over time, one requires that
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g, =lg; (2.11.11)

The contravariant base vectors G' transform to gi(t) over time through the time-dependent

inverse transpose of the deformation gradient: g'(t)=F"(t)G'. For this relation to hold at
all times, one must have, from Egn. 2.11.9d,

G'=0=FTg'
=F'g'+F'g’ (2.11.12)
=FT(|Tgi +gi)

Thus, in order to maintain the convection of the normal basis over time, one requires that
g =-1g' (2.11.13)
The Rate of Deformation and Spin Tensors

From 2.5.6, | =d +w. The covariant components of the rate of deformation and spin are

% (+17)g, = % (6, ®g"+9" ®g, ), = (g g, +0, 9)=%9 9,
w =500, =306, ©0" 0" @4, )8, =5(6,-6, -0,
(2.11.14)
Alternatively, from 2.11.6a
d=(1+1")=>(s,6,+6,9,)9, ®g,
=%gi 9,0,®0, (2.11.15)
:%gijgi®gj
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2.12 Pull Back, Push Forward and Lie Time Derivatives

This section is in the main concerned with the following issue: an observer attached to a
fixed, say Cartesian, coordinate system will see a material move and deform over time, and
will observe various vectorial and tensorial quantities to change also. However, a
hypothetical observer attached to the deforming material, and moving and deforming with
the material, will see something different. The question is: what quantities will be seen to
change from this embedded observer’s viewpoint?

2.12.1 Time Derivatives of Spatial Fields

In terms of the spatial basis, a spatial vector v can be expressed in terms of the covariant
components and contravariant components,

v=vg, v=Vg, (2.12.1)

We want to distinguish between two quantities. The first is the material time derivative of the
vector v:

v=vg =vg +vg', v=Vg =Vg +V'g (2.12.2)
The second is the time derivative holding the base vectors fixed,
vg', Vg (2.12.3)

This latter is called the convected derivative and is the rate of the change as seen by an
observer attached to the deforming bases.

From Eqn. 2.12.1, the components of v can be expressed as
V,=v-g, V=v-g (2.12.4)
Taking the material time derivative, and using Eqns. 2.11.11, 2.11.13,

Vi:V.gi vi:V'gi
=v-g+v-g, =v-g+v-g (2.12.5)
=(v41'v)-g, =(v-Iv)-¢

Thus there are two convected derivatives of a vector, depending on whether one is using
covariant or contravariant components:
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vg' =v+1Tv
. (2.12.6)
Vg, =v—1lv

As will be seen below, these quantities are Lie derivatives of the vector v.

The time derivative of the components can be expressed in an alternative way, by expressing
the spatial base vectors g;, g' in terms of the material base vectors G;, G'; using Eqns.
2.10.23:

V:V . Vi:V'gi

=v-FG,, =v-F'G' (2.12.7)
— FTVG :FflvGi

So, as an alternative to Eqns. 2.12.6,

VG' =F'v

VG, =F'v

(2.12.8)

As will be seen further below, the quantities on the right are the material time derivatives of
the pull-back of the vector v.

Repeating the above, now for a spatial tensor a: in terms of the spatial basis, a can be
expressed in terms of the covariant components and contravariant components as

a=ag ®g', a=alg®g, (2.12.9)

The material time derivative of the tensor a is

a= aijgi ®gj = aijgi ®gj +aijgi ®gj +aijgi ®gj

A (2.12.10)
= aijgi ®g, = aijgi ®g, +aijgi ®g, "‘aijgi ®g,
and the convected derivative is the first term:
a8 ®g’, a'g ®g, (2.12.11)

The components of a can be expressed as
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a; =gAg;, a'=gAg’ (2.12.12)

Taking the material time derivative, and again using Eqns. 2.11.11, 2.11.13,

&; =gag, ' =g'ag/
=gag, +gag, +gag, =—1"g'ag’ + g'ag’ —g'al'g’ (2.12.13)
=gi(zi+al+lTa)gj :gi(ﬁ—la—alT)gj

The convected derivatives are thus

ag g =a+al+1"a
' (2.12.14)
alg, ®g,=a-la-al'

As will be seen below, these quantities are Lie derivatives of the tensor a.

The time derivative of the components can be expressed in an alternative way, by expressing
the spatial base vectors g;, g' in terms of the material base vectors G;, G'; using Eqns.
2.10.23:

&, = gag, a’ =glag’
=FGaFG, , =F'G'aF "G’ (2.12.15)
=G, F'aFG, =G'F'aF "G’

So, as an alternative to Eqns. 2.12.14,
4,G' ® G’ =F"aF

a'G,®G,;=F'aF "

(2.12.16)

As will be seen next, the quantities on the right are the material time derivatives of the pull-
back of the tensor a.

Example

Considering again Example 1 which was worked through in detail in §2.10, suppose we have
a shearing deformation as shown in Fig. 2.12.1 (this is Fig. 2.10.3).
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E e
Figure 2.12.1: A pure shear deformation of one parallelogram into another

Let the shear angle £ in Fig. 2.12.1 evolve over time according to

p=a+yt (2.12.17)
From Eqns. 2.10.7, 2.10.11, the rates of change of the base vectors are
ig —ie—O ig _d ;e te, = e
= dt ' 7 dt=* dtl tan(a+pt) sin® (e + 1)
(2.12.18)
1
igl :i 6 ——— =6 :++eza _gzziezzo
dt dt tan(a + yt) sin” (& + yt) dt dt
The velocity gradient is, from Eqn. 2.11.5,
1=g, ®g +8, ®g’
Y
=——"—¢ ®e 2.12.19
s e ( )
.10 1
where IT is given by Eqn. 2.10.26, and
. d 1 1 y
I(t)=— - =— 2.12.20
() dt{tan(a+7/t) tan(a)] sin® (& + 1) ( )
Solid Mechanics Part I11 310 Kelly



Section 2.12

Considering again the vector V of Eqn. 2.10.44, V = [VX v, ]T (Ei ) , and its corresponding
deformed vector v of Eqn. 2.10.47, v= [VX +11V, VJ (e),

wﬁfﬂ (e). (2.12.21)

The contravariant and covariant components of v are

Vv
. - .|V -~ Y
v=V'g, \'/':H{Oy}, v=vg', v =II] 1 Y (2.12.22)
tan B 7
The “hat” on theV is to emphasise that (see Eqns. 2.12.5)
Vi=vg 2V =y, Vi=Veg#Vi=y.g (2.12.23)

From Eqns. 2.12.6, the convected derivatives are

) ) Vy 0 1]V, +I1V, Ty =TT B 0 0 VX+HVy
v—Ilv=II [0}—[0 0} Vy v+l v= 0 + L o Vy
(2.12.23)

.o ’ 1 v,
= :H
0 V, +11V,

Thus v —Iv =0, which, from Eqn. 2.12.6, implies that V' = 0. This is the expected result: the
contravariant components do not change over time. They are always [VX -V, /tana Vy} , as

given by Eqn. 2.10.47b.

Consider now an example tensor

A:[:i ;\ﬂ (E;) (2.12.24)

The covariant and contravariant components are
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i 1 1 1 ]
Ax— n (Axy+AyX)+ nZ A/y Axy_ n A/y
A= tana | tan” o tana (Gi)
Ayx_tarthyy AW
- ‘ (2.12.25)
Ay Ay + A, _
A= tana (G')
Ay +A‘X tan o Ayy-i_tanoc(A(y Ayx) tan’ o X_

This deforms to (with F given by Eqn. 2.10.25)

1 I A A [AGTIA, A +TIA,
o J[Ayx AWH A A, } L) @R

Now

FA=(g, ®G')A"G, ®G,

) (2.12.26)
=A'g, ®G;

Converting between the various convected base vectors using Eqns. 2.10.7-8, 2.10.11-12, the
contravariant and covariant and components are a=a'g, ® g pa= aijgi ®g:

I 1 1 1 1
4l A‘X_tan,b’AKy_tanaAyijtana tanﬂAyy Ay~ AWtana
g _tanﬂAW Ay
A<X+Ayxn +AyyH+tan (A(X—i-AyXH)
a; =
1 1 1
_Ayx+tanﬂ(Axx+AyXH) AyijtanﬂAy tan,B(AMLAyyH)jLtanzﬂ(A(X+AyXH)
(2.12.27)
Also,
(A A,
a-“{ 0 o} (e), (2.12.28)

and the contravariant and covariant components are
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1
a=a'g ®g, a'=II A tan,BAyy 8
0 0
1 (2.12.29)
+
I e ang A
a=8,g' ®g', & =II 1 1 1
+
tan 3 % tan,B(tan,B ot AW]
Again, the “hat” emphasises that (see Eqns. 2.12.13)
al =glagl » a" =g'ag’, éij =gag,; # a; = gag, (2.12.30)

Now

a—la—al" =TI

_Ayy 0
Ay /&x”’wm%}
_A&X +A LT A+ A +AIT

—A, - AT o}

(2.12.31)

a+al+1"a=11

Thus a—la—al" =0,i.e. &' =0, only when A(y = Ayy =0, which is consistent with Eqn.

2.12.27a (only constant terms, independent of # remain in that case).

2.12.2 Push-Forward and Pull-Back

Next are defined the push-forward and pull-back of vectors and tensors, which will lead into

the concept of Lie derivatives, which relate back to what was just discussed above regarding

convected derivatives.

Vectors

Consider a vector V given in terms of the reference configuration base vectors:
V=V,(e’)G'

2.12.32
=v'(e')G, ( :

The push-forward, symbolised by y. (0) , is defined to be the vector with the same

components, but with respect to the current configuration base vectors. There are 2 push-
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forward operations, depending on the type of components used; the symbol b is used for
covariant components V, and the symbol # for contravariant components V' ; using 2.10.23,

2(V) =Vg =VF'G' =F "V

. _ _ Push-forward of Vector (2.12.33)
2-(V) =V'g, =V'FG, =FV

Eqn. 2.12.33b says that the push forward of the contravariant form of V is simply FV. In
other words, the push forward here is the actual corresponding vector in the deformed

configuration, v=FV = v (G)j )gi , and, as a consequence of the definitions, Vi=V' as
illustrated in Fig. 2.12.2.

®
/

Figure 2.12.2: The push-forward of a vector V

A special case of Eqn. 2.12.33b is the push forward of a line element in the reference
configuration, giving the corresponding line element in the current configuration:

7.(dX)" =dO'g, = dx. (2.12.34)
Similarly, consider a vector v given in terms of the current configuration basis:
V:Vigi :Vigi (212.35)

The pull-back of v, 7."(v), is defined to be the vector with components v, (or V') with

respect to the reference configuration base vectors G' (or G,). Using 2.10.23,

;(;l(v)b =vG'=vF'g =F"v

P _ Pull-back of a vector (2.12.36)
7-'(v) =V'G, =V'F'g, =F'v

and, for a line element in the current configuration,

7. (dx)" =dx'G, =F'dx = dX. (2.12.37)
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Note that a push-forward and pull-back applied successively to a vector with the same
component type will result in the initial vector.

From the above, for two material vectors U and V and two spatial vectors u and v,

U-V=2.00) 2(V) = 20) 7(V)
u-v=g () ) = @) ()

For example, as a special case of this, in the reference configuration, G, and G” are

(2.12.38)

perpendicular: G, -G* = 0. Pushing forward these vectors, we get from Eqn. 2.12.33:
FG, =g, and F "G’ =g’, and again ;(*(Gl)# -;(*(Gz)b =g g =0.

Tensors
Consider a material tensor A:
A=AG' ®G'=A'G,®G,=A\G,®G’' =A'G'®G, (2.12.39)

As for the vector, the push-forward of A, .(A), is defined to be the tensor with the same
components, but with respect to the deformed base vectors. Thus, using 2.10.23,

AY =Ag ®gl = =A
A) =

7. (F'G'®F'G')=F "AF"
A

Ag,@gJ A'(FG,®FG;) =FAF'

=

Push-forward of Tensor (2.12.40)

\

A) =Alg,®g' = A (FG,®F 'G’) =FAF"

(
+(
(A)
(A)

Z(A

=A'g'®g, =A'(F'G'®FG;) =F "AF’

Similarly, consider a spatial tensor a:
a=a;g ®g'=ag ®g, -a g ®g' =a'g Vg, (2.12.41)

The pull-back is
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7'(a) =2,G' ®G' =g, (F'g' ®F'g') =F'aF
7-'(a)' =a'G,®G, =a'(F'g, ®F'g;) =F 'aF '
o . _ , Pull-back of Tensor (2.12.42)
7'(a) =a G, ®G’ =a||(F'g, ®F'g’) =F 'aF
7'(2) =3/G'®G =2/ (F'g' ®F'g;) =F'aF '

The first of these, F'aF , is called the covariant pull-back, whereas the second, F'aF ", is
called the contravariant pull-back.

Since F maps material vectors to spatial vectors, a maps spatial vectors to spatial vectors, and

F' maps spatial vectors to material vectors, it follows that the pull-back F'aF maps material
vectors to material vectors, and so is a material tensor field, and similarly for the other three
pull-backs.

Time Derivatives

It will be recognised that the expressions for the pull backs of a spatial covariant tensor and
spatial contravariant tensor in Eqns. 2.12.42a,b are those appearing in Eqns. 2.12.16. Keeping
in mind Eqn. 2.12.14, one sees that, for a spatial tensor in terms of covariant components,

a= aijgi ®g', and contravariant components, a=a'g, ® g i

.| j T‘ i j . T
a;g ®g’=(F aF}g ®g! =a+al+la
(2.12.43)

a'g ®g, =[F"aF‘T]gi ®g,=a—la-al

Other Push-Forward and Pull-Back relations for Vectors and Tensors
Here follow some relations involving the push-forward and pull-backs of tensors.
For two material tensors A and B and two spatial tensors a and b, the scalar product is

A:B=AB"=A"B; =A\B' =A'B]

o o (2.12.44)
a:b=a;b" =a’b; =a'b’ =a/'b,

This scalar product then push-forwards and pull-backs as { A Problem 1}
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(2.12.45)

For material tensor A and material vectors U,V , and spatial tensor a and spatial vectors

u,v,
UAV =U.AW. =U'AVI=U.AVI=U'AlV.
oo A“’_ R AV, (2.12.46)
uav=ua'v; =u'av’ =uav’ =u'av,
Then
UAV = 2.(U) 2.(A) 2.(V)’ = 2.(U) 2.(A) 2.(V)
= 7.(U) 7.(A) 7.(V) = 2.(U) 1.(A) 4. (V)
200 2) 2.9 = (0 28) V) o)
uav = 7. (u) 7' (@) 7' (v) = 2" () 2t (@) 2 (v

For material tensor A and material vector V, and spatial tensor a and spatial vector v, the
contractions AV and av are

AV = AV’ = AV = AV = AV,

_ _ o ) (2.12.48)
av=a;v' =a'v; =ajv' =ay,
and so transform as
2:(AV) = 2.(A) 2.(V)' = 7.(&) 2. (V)
2:(AV)" = 2.(A) 2.(V) = 2.(A) 2.(V)’
(2.12.49)
z@v) = 7' @) 7' (v) = @) i (v)
}(*l(aV # — Z*—l (a)# -1 (V b — Z*—l a)\ -1 (V)#
Finally, for material tensors A, B and spatial tensors a, b,
AB=ABYG' ®G,=A*B/G'®G, =A'B,G'®G' =AB‘G' ®G’ =" (212,50

ab = aikbkjgi ®g; :aikbkjgi ®g; :a{kbkjgi ®gj :aikb-kjgi ®gj =
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and so

(2.12.51)

Push-Forward and Pull-Back operations for Strain Tensors

The push-forward of the covariant right Cauchy-Green strain and its contravariant inverse are

7.(C) =C,g' ®g' =F "CF"

. i . (2.12.52)
z(c) =(c")e ®g, =FCF"

From 2.10.39, C; = g;;, the covariant components of the identity tensor expressed in terms

of the convected base vectors in the current configuration, i.e. the spatial metric tensor,

g= gijgi ®g', and (C’1 )” =g", the contravariant components of g. Thus the push-forward

of covariant C is g and the pull-back of covariant g is C, and the push-forward of

contravariant C™' is g and the pull-back of contravariant g is C™':

r(Cf =g z'(@=C

Y _ _
) =g 2 =C"
Push-forward of the right Cauchy-Green strain

(2.12.53)

Similarly, the pull-back of covariant b~ is G and the push-forward of covariant G is b™",
and the pull-back of contravariant b is G and the push-forward of contravariant G is b.

7+(G)

# (2.12.54)
7.(G)

b, z'b'f=G
b, x'(b)'=G
Pull-back of the left Cauchy-Green strain

For the covariant form of the Green-Lagrange strain, the push-forward is
7.(E) =E;g' ®g' =F"EF". (2.12.55)

From 2.10.43, E; =e¢;, the covariant components of the Euler-Almansi strain tensor, and so

the push-forward of covariant E is e and the pull-back of covariant e is E.
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7.(E) =e, z.'(e) =E| (2.12.56)
Push-forward of the Green-Lagrange strain
Pull-back of the Euler-Almansi strain

Push-Forward and Pull-Back with Polar Decomposition Intermediate
Configurations

Pull backs and push-forwards can be defined relative to any two configurations. Consider
the polar decomposition and the intermediate configurations discussed in §2.10 (see Fig.
2.10.11). Eftectively, we are replacing F with R: pushing forward a material tensor A from

the reference configuration {G, } to the configuration {f}l } leads to

7.(APrc) = AG' ®GT = A (R'G'®R'G')=R AR = RAR"

7.(A)re) = A'G, ® G, = A(RG, ®RG,) =RAR’ o125
7.(A)re) = A'G, ®G) = A/ (RG, ®R "G’) =RAR" =RAR’ '
7:(AVr) = A'G'®G, = A'(R"G' ®RG,) =R"AR" = RAR’

Note that the result is the same regardless of whether one is using the covariant, contravariant
or mixed forms.

Similarly, the pull back of a tensor A from the intermediate configuration {A i } to the
reference configuration {G, } is

27(Afwe) = A,G' ® G =RTAR
(A Y Al TA
7'(Afre) = A'G, ®G, =RTAR
o R _ ) (2.12.58)
;(;1( )R(c) =AG,®G’ =R"AR
;(JI(A )/R(e) =A'G'®G, =R"AR

The push-forward of a tensor a from {g, } to {g} and the corresponding pull-back of a
spatial tensor a is

)
(a)'re) =28, ®§, = R"aR
\ N AP \g DR (2.12.59)
r@ =45g ®g' =RaR"  y7'(a)we =ag ®g’' =R"aR
(a)
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The push-forwards and pull-backs due to the stretch tensors are

7.(Aue) = AE ®8' =A(U'G'®U G )=U AU = U AU
7.(AYve) = A’g, ®g, = A'(UG, ®UG,) =UAU" = UAU .12.60)
7.(A) vy =A'g, ®g) = A (UG, ®U'G!) = UAU" ST
7.(AYue) = A’E' ®g, =AI(UTG' ®UG,) =UTAU" =U'AU
-1(2a\b A i i 112
e (a) u@) =8;G ®G’ =UalU
“1{2}* Adj _yr-layr-l
X+ vg =a G, ®G, =U"al
( )\ v : (2.12.61)
7.'(8) ve) =4 G, ®G’ =UaU
7:'(@) ve) =4'G' ®G = UaU"
and
A)b _ i I Z1(\b A0 o N
Z:\A)v6) = Ag ®gl =v Av 2 (a) v =2,G' ®G' = vav
Y A
A e) =Ag, ®g. = VAV 7-(a)'ve =a"G, ®G =vav™
2l&) o= Mg @, ) : (2.12.62)

Push-forwards and pull-backs can also be defined using F' (in the place of F) and these
move between the intermediate configurations, Go g.

Recall Eqn. 2.10.64, which state that the covariant components of U,v,U™", v with respect

to the bases G', G, g' o' respectively, are equal. This can be explained also in terms of

push-forwards and pull-backs. For example, with v=RUR" and v' = RU'R", one can
write (in fact these relations are valid for all component types)

V=20 V=20 )y (2.12.63)

The first of these shows that the components of U with respect to G are the same as those of
v with respect to G (for all component types). The second shows that the components of

U™' with respect to g are the same as those of v™' with respect to g.

As another example, with C = U?,
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C=z"'(& v, C'=2"8) ve (2.12.64)

2.12.3 The Lie Time Derivative

The Lie (time) derivative is a concept of tensor analysis which is used to distinguish
between the change in some quantity, and the change in that quantity excluding changes due
to the motion/configuration changes. As mentioned in the introduction to this section, we can
imagine a hypothetical observer attached to the deforming material, who moves and deforms

with the material. This observer will see no change in the configuration itself, g =g' =0.

However, they will still see changes to vectors and tensors. These changes are measured
using the Lie Derivative, which will be seen to be none other than the convected derivative
discussed above.

Vectors

First, the Lie (time) derivative L v of a vector v is the material derivative holding the
deformed basis constant, that is, Eqns. 2.12.3:

L, v=vg'
_ (2.12.65)
L, v=Vg,
Formally, it is defined in terms of the pull-back and push-forward,
dr . - co
L,v=7y. a[ A (V):I The Lie Time Derivative (2.12.66)

This is illustrated in the Fig. 2.12.3. The spatial vector is first pulled back to the reference
configuration, there the differentiation is carried out, where the base vectors are constant,
then the vector is pushed forward again to the spatial description.

X
d
%xﬁ(v) /\ Z{az; (v)]

>

A\
S~
z

Figure 2.12.3: The Lie Derivative
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For covariant components, one first pulls back the vector Vigi to ViGi , the derivative is taken,

V,G', and then it is pushed forward to V,g', which is consistent with the definition 2.12.65a.

The definition 2.12.51 allows one to calculate the Lie derivative in absolute notation: using
2.12.36a,2.12.33a,2.11.9,

b d -1 b ' -T d T
va:;(*[a[)(* (v) D =F (E[F v])
=F"(F'v+F'V) (2.12.67)
=F"(F1'v+F'V)
=v+l'v

The Lie derivative for the contravariant components can be calculated in a similar way, and
in summary (these are simply Eqns. 2.12.6): { AProblem 2}

Lv=vg =v+1'v
Lie Derivatives of Vectors (2.12.68)

L'v=vg =v-1Iv

Tensors

The material time derivative of a spatial tensor a is

é:aijgi®gj+aijgi®gj+aijgi®gj
:aijgi®g'+aijgi®g'+aijgi®g'

; Lo (2.12.69)
:a-jgi®g +a-jgi®g +a~jgi®g

=a'g'®g; +a'g' ®g; +a'g' ®g,
The Lie (time) derivative L a is then

La= a'lijgi ®g!

L a=a'g ®g,

o ! (2.12.70)
La=dg ®g’

La=3's'®g,

For example, for covariant components, one first pulls back the tensor aijgi ®g!to
aijGi ® G, the derivative is taken, a'lijGi ® G, and then it is pushed forward to a'lijgi Rgl.
Thus, using 2.12.42a, 2.12.42a, 2.11.9,
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b
La =yz. (%[;{Jl (a)bD
=F " (F'aF + F'aF + F'aF )F ' 2.12.71)
=F " (F'I'aF + F'aF + F'alF )F '
=1'a+a+al

The Lie derivative for the other components can be calculated in a similar way, and in
summary (these are Eqns. 2.12.14): { AProblem 3}

b 3 i j . T
La=a,g' ®g' =a+la+al

Lia=a"g, ®g, =a—la—al'
. y o Lie Derivatives of Tensors  (2.12.72)
La=a\g ®g’ =a-la+al

La=4'g' ®g, =a+1"a-al

The first of these, a+1"a +al, is called the Cotter-Rivlin rate. The second of these,
a—la—al’ is also called the Oldroyd rate.

Lie Derivatives of Strain Tensors

From 2.5.18,

d=é¢+1"e+el

. (2.12.73)
b-Ib-bl" =0

and so the Lie derivative of the covariant form of the Euler-Almansi strain is the rate of
deformation and the Lie derivative of the contravariant form of the left Cauchy-Green tensor
is zero. Further, from 2.12.53a, the Lie derivative of the metric tensor is the push forward of
the material time derivative of the right Cauchy-Green strain:

Lg-z(cf, (2.12.74)
Also, directly from 2.11.15,

Lg=2d (2.12.75)

Corotational Rates
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The Lie derivatives in 2.12.72 were derived using pull-backs and push-forwards between the
reference configuration and the current configuration. If, instead, we relate quantities to the
rotated intermediate configuration, in other words use R instead of F in the calculations, we

find that, using Eqn. 2.6.1, @, =RR" =-RR",

Lva:)(*[gt[)(* (a )]j

- R(g [RTaR]j (2.12.76)

=a-Q.a+aQ,
This is called the Green-Naghdi rate.

Rather than pulling back from the intermediate configuration to the reference configuration,
we can choose the current configuration to be the reference configuration. Rotating from this
configuration (see section 2.6.3), £, = w, the spin tensor, and one obtains the Jaumann

rate, a—wa+aw.

Lie Derivatives and Objective Rates

The concept of objectivity was discussed in section 2.8. Essentially, if two observers are
rotating relative to each other with rotation Q(t) and both are observing some spatial tensor,

T as measured by one observer and T~ as measured by the other, then this tensor is objective
provided T" =QTQ" for all Q, i.e. the measurement of the deformation would be
independent of the observer. One of the most important uses of the Lie derivative is that Lie
derivatives of objective spatial tensors are objective spatial tensors. Thus the rates given in
2.12.72 are all objective.

For example, suppose we have an objective spatial tensor a, i.e. so that a° = QaQ". The
velocity gradient is not objective, and instead satisfies the relation 2.8.27: I' = QIQ" + QQ".

Using the properties of the transpose, the orthogonality of Q, and the identity QQ" =-QQ",
one has for Eqns. 2.12.72a,b,
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(vaa)* = ;+ I"a +a’l’
- QaQ"+(QIQ" +QQ")' (QaQ") +(QaQ" )(QIQ" + Q")
=QaQ" +QaQ" +QaQ" +QI'Q'QaQ" +QQ'QaQ’
+QaQ'QIQ" + QaQ'QQ’
=Q(a+1"a+al)Q"
_ (2.12.77)
(L#va)* —a'-I'a"—a'1"
~QaQ"-(QIQ" +0Q")(QaQ" ) -(QaQ" )(QIQ" +QQ")'
=QaQ" +QaQ" +QaQ" -QIQ'QaQ" -QQ'QaQ’
-QaQ'QI'Q" -QaQ'QQ"
=Q(a-la-al")Q'
showing that these rates are indeed objective.

Further, any linear combination of them is objective, for example,
%[(zi—i—lTa—i-al)—i-(él—la—alT)]: é+%[—(l—lT)a+a(l—lT) —a—wataw  (2.12.78)

is objective, provided a is. This is the Jaumann rate introduced in Eqn. 2.8.36 and
mentioned after Eqn. 2.12.76 above. Further, as mentioned after Eqn. 2.12.72, the Cotter-

Rivlin rate of Eqn. 2.8.37 is equivalent to L’a.

The Lie Derivative and the Directional Derivative

Recall that the material time derivative of a tensor can be written in terms of the directional
derivative, §2.6.5. Hence the Lie derivative can also be expressed as

L,T=7(0,(z"(T)[v) (2.12.79)

and hence the subscript v on the L. Thus one can say that the Lie derivative is the push
forward of the directional derivative of the material field y,"(T) in the direction of the
velocity vector.

2.12.4 Problems
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1. Eqgns. 2.12.30 follow immediately from 2.12.29. However, use Eqns. 2.12.40, 2.12.42,
1.e. y. (A)b =F "AF ', etc., directly, to verify relations 2.12.45.

2. Derive the Lie derivatives of a vector v, Eqns. 2.12.68.
3. Derive the Lie derivatives of a tensor a, Eqns. 2.12.72.
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2.13 Variation and Linearisation of Kinematic Tensors

2.13.1 The Variation of Kinematic Tensors
The Variation
In this section is reviewed the concept of the variation, introduced in Part I, §8.5.

The variation is defined as follows: consider a function u(x), with u*(x) a second function
which is at most infinitesimally different from u(x) at every point X, Fig. 2.13.1

ou(x)

u*(x) \

Figure 2.13.1: the variation

Then define

‘5u =u*(x)— u(X)| The Variation (2.13.1)

The operator ¢ is called the variation symbol and Jdu is called the variation of u(x).

The variation of u(x) is understood to represent an infinitesimal change in the function at Xx.

Note from the figure that a variation ou of a function u is different to a differential du. The
ordinary differentiation gives a measure of the change of a function resulting from a specified
change in the independent variable (in this case x). Also, note that the independent variable
does not participate in the variation process; the variation operator imparts an infinitesimal
change to the function u at some fixed x — formally, one can write this as 5 x =0.

The Commutative Properties of the variation operator

0 Jsu-sdv (2.13.2)
dx dx
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Proof:
§d_“ = (d_“j*_d_“ = du * _d_“ :M :i(gu(x))
dx (dx dx dx dx dx dx
(2) §]Zu(x)dx = T5u(x)dx (2.13.3)
Proof:

5Tu(x)dx = Tu *(x)dx — Tu(x)dx = T[u *(x)— u(x)]dx = Té’u(x)dx

X X

Variation of a Function

Consider A, a scalar-, vector-, or tensor-valued function of u, A(u) . When we apply a

variation to u, du, A changes to A(u + 5u) . The variation of A is then defined as
O0A(u,0u)=A(u+ou)—A(u) (2.13.4)

(in the limit as ou — 0). This can be expressed using the concept of the directional
derivative in the usual way (see §1.6.11): consider the function A (u+ &du), so that

A(u+5§u) . :A(u) and A(u+5§u)

£= &=

A(e)=A(0)+&(dA/de) _ +---,0r

. =A(u+5u). A Taylor expansion gives

=0
d
A(u+edu)=A(u)+¢ d—A(u+g5u) e (2.13.5)
2 =0
Setting ¢ =1 then gives Eqn. 2.13.4; thus
A(u+ou)= A(u)+0,A[du] (2.13.6)

where 0, A[du] is the directional derivative of A in the direction ou ; the directional
derivative in this context is the variation of A:

SA(u,6u)=0,A[ou] = di A(u+gdu) (2.13.7)
& =0
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For example, consider the scalar function ¢ = P : E, where P and E are second order tensors.
Then

0, HOE] = ;_g

54(E, 5E) P:(E+&0E)=P:5E (2.13.8)

e=0

The second variation is defined as

SA(u + &6u) (2.13.9)

=0

5*A =65(6A)=0,0A[6u] = di
&

For example, for a scalar function ¢(u) of a vector u, the chain rule and Eqn. 2.13.2 give

5(/>(u,5u):i @(u+&du) = d¢(u+8§u)| d(u+2ou) :a_(p.&u
del,_, d(u+e&du) ‘ de ou
NN . (2.13.10)
52(0:@_5“:(5%)5“: 6_(p§u -ou=ou o ou
Ou ou Ooudu oudu

Variation of Functions of the Displacement

In what follows is discussed the change (variation) in functions A(u) when the displacement

(or velocity) fields undergo a variation. These ideas are useful in formulating variational
principles of mechanics (see, for example, §3.9).

Shown in Fig. 2.13.2 is the current configuration frozen at some instant in time. The
displacement field is then allowed to undergo a variation ou. This change to the
displacement field evidently changes kinematic tensors, and these changes are now
investigated. Note that this variation to the displacement induces a variation to x, ox, but X
remains unchanged, 60X =0.

reference
configuration current
configuration
i

Figure 2.13.2: a variation of the displacement
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To evaluate the variation of the deformation gradient F, 6F(u,du), where u is the
displacement field, note that u = x — X and Eqn. 2.2.43, F(u)= Gradu +1I. One has, from
the definition 2.13.7,

F(u+&du)

=0

SF (u,6u) = 8,F[5u] :di
&

_%g_o [F(u)+ &Grad(Su)+1] (2.13.11)

= Grad(du)

Noting the first commutative property of the variation, 2.13.2, this can also be expressed as
5F (u,6u) = §(Gradu) (2.13.12)

Note that ou is completely independent of the function u.

Here are some other examples, involving the inverse deformation gradient, the Green-

Lagrange strain, the inverse right Cauchy-Green strain and the spatial line element:
{ AProblem 1-3}

OF ' = —F'graddu
OE = F' %F (2.13.13)
OC" =-2F'eF "

where € is the small strain tensor, Eqn. 2.2.48.

One also has, using the chain rule for the directional derivative, Eqn. 1.15.28, the directional
derivative for the determinant, Eqn. 1.15.32, the trace relation 1.10.10e, Eqn. 2.2.8b,

5J(u,6u)= 5detF(u,du)
= 0, detF[su]
= 0, det F[0,F[ou]|
= 0, det F[Grad(su)]
= detF[F*T :Grad(&u)]
= Jtr(Grad(é'u)F ")
= Jtr(grad(su))
= Jdiv(du)

(2.13.14)
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Example

To put some of the above concepts into a simple and less abstract setting, consider the
following scenario: a bar over 0 < X <1 is extended, as illustrated in Fig. 2.13.3, according
to:

x=2X"+3
(2.13.15)
X=,/2(x-3)
The deformation gradient is
F = Gradx =4X (2.13.16)

So, for example, in the initial configuration (A), an infinitesimal line element at X =0 does
not stretch (F = 0) whereas a line element at X =1 stretches by 4.

The inverse deformation gradient is

1

w/8(x—3)

This implies that, in the current configuration (B), an infinitesimal line element at x =3 is the
same size as its counterpart in the initial configuration (F~' = 0 ) whereas a line element at
x =5 shrinks by a factor of 4 when returning to the initial configuration

F' =gradX = (2.13.17)

F(u)
dx _y
dX
= N\
A — B —
.
0 1 3 5
ax T F(u)
dx 4 dx
€ =4(1+
e~ 4(1+0)
A T C
0 1 3+ 3¢ 5+ 5¢

Figure 2.13.3: a motion and a variation
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Now introduce a variation, which moves the bar from configuration B to configuration C:
Su=ex=z(2X+3) (2.13.18)

The point at 3 moves to 3 + 3¢ and the point at 5 moves to 5+ 5¢ . (This variation happens
to be a simple linear function of x, but it can be anything for our purposes here.)

The variation is plotted below as a function of X and x.

- S¢
3¢ —
X
- S¢
3&
. . " . . :
Figure 2.13.4: the variation as a function of x and X
Differentiating Eqns. 2.13.19, the gradients of the variations are
Grad(ou)=¢(4X
(du)=2(4X) (2.13.20)

grad(Su)=¢
which are the slopes in Figure 2.13.4.

To calculate the F associated with the new variation configuration, i.e. F(u + 5u) , hote that

points X have now moved to:
2X* +3+£(2X7 +3) (2.13.21)

and so
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F(u+du) = Grad((1+£)(2X’ +3)) = 4X + £4X (2.13.22)

This says that an infinitesimal line element at X =0 does not stretch when moving to
configuration C (F =0) whereas a line element at X =1 stretches by 4 + 4¢ .

Subtracting Eqn. 2.13.17 form Eqn. 2.13.22:
SF =F(u+6u)—F(u)=¢(4X) (2.13.23)
From Eqn. 2.13.20, this verifies Eqn. 2.13.11, that

SF = Grad(JSu) (2.13.24)

We could also calculate the variation of F by moving directly from configuration B to
configuration C. The movement of the particles from B to C is given by Eqn. 2.13.19:

¢9(2X2 + 3) and so, based on this motion, SF = Grad(g(2X2 + 3)) =¢(4X).

To calculate the F™' associated with the new variation configuration, i.e. F' (u + 5u) , note

that the “new” current position x is (Eqn. 2.13.21):
xe =2X7 +3+£(2X’ +3)
1( X, _3) (2.13.25)

->X=|=
2\1+¢

This means that the point 3+ 3¢ in configuration C corresponds to X =0 and the point
5+ 5¢ corresponds to X =1. Then,

d [I{ x 1 1
F' ou)=— |—-| == -3|= 2.13.26
(u+5u) dx, 2[1+g ] 1+g\/8(x70_3) ( )
1+&

So an element at the point 3 + 3¢ in configuration C does not change in size as it is mapped
back to the initial configuration, whereas an element at the point 5+ 5S¢ shrinks back to the

initial configuration by a factor of 1/ (4 + 4¢), as indicated in Fig. 2.13.3.

Alternatively, since x. = X + &x, this can be written as

1 1

1+s B(x_3)

F'(u+du)=

(2.13.27)
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Subtracting Eqn. 2.13.18 from Eqn. 2.13.27, the variation of the inverse deformation gradient
is then

1 1 1
SF'(u)=F ' (u+du)-F'(u)= -
l+¢ /8(x-3 8(x-3
\/ ( ) \/ ( ) (2.13.28)
_ € |
I+e [8(x-3)
Using a series expansion, (1 + g)_l =1-g+¢&° —..., for small ¢ (neglecting terms of order
&),
SF ' (u)= —g; (2.13.29)
8(x—3)
From Eqns. 2.13.18 and 2.13.20, this verifies the relation 2.13.13:
SF ' (u)=-F'grad(3u) (2.13.30)

A formula for the inverse deformation gradient is F~' = I — gradu . However, note that
F'(u+6u)#I-0u/ox, but that F~'(u+du)=1-0u/ox..

The Lie Variation

The Lie-variation is defined for spatial vectors and tensors as a variation holding the
deformed basis constant. For example,

Sra=da,g' ®g’ (2.13.31)

The object is first pulled-back, the variation is then taken and finally a push-forward is
carried out. For example, analogous to 2.12.66,

S.alu,ou)= 2.(0, (7' (a)fou)) (2.13.32)

For example, consider the Lie-variation of the Euler-Almansi strain e. First, from 2.12.56b,
7°,(e)> =E. Then 2.13.13b gives 0, (;(: (e) lé‘u] =0E =F"%F . From 2.12.40a,

5.e(w,0n)= 7.0, (7, () o] = 1.(F"eF) = (2.13.33)
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2.13.2 Linearisation of Kinematic Functions
Linearisation of a Function

As for the variation, consider A, a scalar-, vector-, or tensor-valued function of u. Ifu
undergoes an increment Au, then, analogous to 2.13.4,

A(u+Au)~ A(u)+0,A[Au] (1.13.34)

The directional derivative 0,A[Au] in this context is also denoted by AA(u, Au). The
linearization of A with respect to u is defined to be

L A(u,Au)= A(u)+ AA(u, Au) (1.13.35)

Using exactly the same method of calculation as was used for the variations above, the
linearization of F and E, for example, are

LF(u,Au)=F(u)+ 8, F[Au]=F + GradAu

LE(u,Au)=E(u)+0,E[Au]= E+F"AeF (2:1330)
where Ag = %((gradAu)T + (gradAu)) is the linearised small strain tensor €.
Linearisation of Variations of a Function
One can also linearise the variation of a function. For example,
L 6A(u,Au) = 5A(u,5u)+ ASA(u, Au) (2.13.37)
The second term here is the directional derivative
ASA[u,Au] =0 ,6A[Au]
(2.13.38)

=—1| OAu+sAu)
dg =0

This leads to an expression similar to 6°A . For example, for a scalar function ¢(u) of a
vector u,

2
A5¢=@-AU=AHM&J (2.13.39)
ou oudu
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Consider now the virtual Green-Lagrange strain, 2.13.11b, 6E = F'%F . To carry out the
linearization of JKE , it is convenient to first write it in the form

OE =F' 6F
=1F" [(grad5u)T + grad5u]F (2.13.40)
= %[(Gradéu)T F+ FTGradéu]

Then
ASE = 8,0E[Au] = 8, {t|(Gradsu)" F + F" Gradsu |[Au] (2.13.41)

Recall that the variation ou is independent of u; this equation is being linearised with respect
to u, and ou is unaffected by the linearization (see Fig. 2.13.3 below). However, the motion,
and in particular F, are affected by the increment in u. Thus { A Problem 4}

AJE = sym((GradAu)" Gradou) (2.13.42)
u
reference current.
configuration configuration

Figure 2.13.3: linearisation

As with the variational operator, one can define the linearization of a spatial tensor as
involving a pull back, followed by the directional derivative, and finally the push forward
operation. Thus

Aa(u,Au) = 7.(0, (7' (a)[Au)) (2.13.43)

2.13.3 Problems
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1. UseEqn. 2222, E=L(F"F-1), Eqn. 2.13.11, 6F(u,5u) = Grad(du), and Eqn. 2.2.8b,

gradv = (GradV)F*I, to show that JE = F' %F , where € is the small strain tensor, Eqn.
2.2.48.

2. Use 2.13.11 to show that the variation of the inverse deformation gradient F~' is
OF ' = —F'graddu. [Hint: differente the relation F~'F =1 by the product rule and then

use the relation gradv = (Gradv)F ™" for vector v.]

3. Use the definition C=F'F to show that SC' = -2F '¢F .
4. Use the relation symA = %(AT + A) to show that

AOE =0 {7[ Gradsu)'F + FTGradé'u]}[Au = sym((GradAu)T Gradé‘u)
5. Use oe=oe= l(grad&u) + grad5uJ to show that the
Ade = ;(*( ( IAu) ;(*sym( GradAu) Gradé‘u)
= sym[ gradAu) -grad5u]
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