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2.13 Variation and Linearisation of Kinematic Tensors 
 
 
2.13.1 The Variation of Kinematic Tensors 
 
The Variation 
 
In this section is reviewed the concept of the variation, introduced in Part I, §8.5. 
 
The variation is defined as follows:  consider a function )(xu , with )(xu*  a second function 
which is at most infinitesimally different from )(xu  at every point x, Fig. 2.13.1 
 

 
 

Figure 2.13.1: the variation 
 
Then define 

 
)()( xuxuu  *  The Variation                        (2.13.1) 

 
The operator   is called the variation symbol and u  is called the variation of )(xu . 
 
The variation of )(xu  is understood to represent an infinitesimal change in the function at x.  
Note from the figure that a variation u  of a function u is different to a differential ud .  The 
ordinary differentiation gives a measure of the change of a function resulting from a specified 
change in the independent variable (in this case x).  Also, note that the independent variable 
does not participate in the variation process; the variation operator imparts an infinitesimal 
change to the function u at some fixed x – formally, one can write this as 0x . 
 
The Commutative Properties of the variation operator 
 

(1) 
x

u
u

x d

d

d

d           (2.13.2) 

 
 

)(xu

)(xu xd

ud

x

)(* xu



Section 2.13 

Solid Mechanics Part III                                                                                Kelly 328

Proof: 
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Variation of a Function 
 
Consider A, a scalar-, vector-, or tensor-valued function of u ,  A u .  When we apply a 

variation to u, u , A changes to  A u u .  The variation of A is then defined as 

 
( , ) ( ) ( )    A u u A u u A u        (2.13.4) 

 
(in the limit as 0 u ).  This can be expressed using the concept of the directional 
derivative in the usual way (see §1.6.11): consider the function  A u u , so that 
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Setting 1   then gives Eqn. 2.13.4; thus 
 

][)()( uAuAuuA u                   (2.13.6) 

 
where [ ]uA u  is the directional derivative of A in the direction u ; the directional 

derivative in this context is the variation of A: 
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For example, consider the scalar function EP : , where P and E are second order tensors.  
Then 
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The second variation is defined as  
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For example, for a scalar function  u  of a vector u, the chain rule and Eqn. 2.13.2 give 
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Variation of Functions of the Displacement 
 
In what follows is discussed the change (variation) in functions )(uA  when the displacement 
(or velocity) fields undergo a variation.  These ideas are useful in formulating variational 
principles of mechanics (see, for example, §3.9). 
 
Shown in Fig. 2.13.2 is the current configuration frozen at some instant in time.  The 
displacement field is then allowed to undergo a variation u .  This change to the 
displacement field evidently changes kinematic tensors, and these changes are now 
investigated.  Note that this variation to the displacement induces a variation to x, x , but X 
remains unchanged, 0X . 
 

 
 

Figure 2.13.2: a variation of the displacement 
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To evaluate the variation of the deformation gradient F,  uuF  , , where u is the 

displacement field, note that Xxu   and Eqn. 2.2.43,   IuuF  Grad .  One has, from 
the definition 2.13.7, 
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Noting the first commutative property of the variation, 2.13.2, this can also be expressed as 
 

   , Grad  F u u u             (2.13.12) 

 
Note that u  is completely independent of the function u. 
 
Here are some other examples, involving the inverse deformation gradient, the Green-
Lagrange strain, the inverse right Cauchy-Green strain and the spatial line element:  
{▲Problem 1-3} 
 

T11

T

11

2

grad











εFFC

εFFE

uFF







         (2.13.13) 

 
where ε  is the small strain tensor, Eqn. 2.2.48. 
 
One also has, using the chain rule for the directional derivative, Eqn. 1.15.28, the directional 
derivative for the determinant, Eqn. 1.15.32, the trace relation 1.10.10e, Eqn. 2.2.8b,  
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Example 
 
To put some of the above concepts into a simple and less abstract setting, consider the 
following scenario: a bar over 0 1 X  is extended, as illustrated in Fig. 2.13.3, according 
to: 
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           (2.13.15) 

 
The deformation gradient is 
 

Grad 4 F x X            (2.13.16) 
 
So, for example, in the initial configuration (A), an infinitesimal line element at 0X  does 
not stretch ( 0F ) whereas a line element at 1X  stretches by 4. 
 
The inverse deformation gradient is 
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                           (2.13.17) 

 
This implies that, in the current configuration (B), an infinitesimal line element at 3x  is the 
same size as its counterpart in the initial configuration ( 1 0 F ) whereas a line element at 

5x  shrinks by a factor of 4 when returning to the initial configuration 
 

 
 

Figure 2.13.3: a motion and a variation 
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Now introduce a variation, which moves the bar from configuration B to configuration C: 
 

 22 3    u x X                               (2.13.18) 

 
The point at 3 moves to 3 3  and the point at 5 moves to 5 5 .  (This variation happens 
to be a simple linear function of x, but it can be anything for our purposes here.) 
 
The variation is plotted below as a function of X and x. 
 

 
 

Figure 2.13.4: the variation as a function of x and X 
 
Differentiating Eqns. 2.13.19, the gradients of the variations are 
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which are the slopes in Figure 2.13.4. 
 
To calculate the F associated with the new variation configuration, i.e.  F u u , note that 

points X have now moved to: 
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     2Grad 1 2 3 4 4       F u u X X X                     (2.13.22) 

 
This says that an infinitesimal line element at 0X  does not stretch when moving to 
configuration C ( 0F ) whereas a line element at 1X  stretches by 4 4 . 
 
Subtracting Eqn. 2.13.17 form Eqn. 2.13.22: 
 

     4     F F u u F u X                                 (2.13.23) 

 
From Eqn. 2.13.20, this verifies Eqn. 2.13.11, that 
 

 Grad F u                                            (2.13.24) 

 
We could also calculate the variation of F by moving directly from configuration B to 
configuration C. The movement of the particles from B to C is given by Eqn. 2.13.19: 

 22 3 X  and so, based on this motion,     2Grad 2 3 4    F X X . 

 
To calculate the 1F  associated with the new variation configuration, i.e.  1  F u u , note 

that the “new” current position x is (Eqn. 2.13.21): 
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This means that the point 3 3  in configuration C corresponds to 0X  and the point 
5 5  corresponds to 1X . Then, 
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So an element at the point 3 3  in configuration C does not change in size as it is mapped 
back to the initial configuration, whereas an element at the point 5 5  shrinks back to the 
initial configuration by a factor of  1 / 4 4 , as indicated in Fig. 2.13.3.  

 
Alternatively, since C  x x x , this can be written as 
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Subtracting Eqn. 2.13.18 from Eqn. 2.13.27, the variation of the inverse deformation gradient 
is then 
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Using a series expansion,   1 21 1      , for small   (neglecting terms of order 
2 ), 
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From Eqns. 2.13.18 and 2.13.20, this verifies the relation 2.13.13: 
 

   1 1grad δu   F u F                                   (2.13.30) 

 
A formula for the inverse deformation gradient is 1 grad  F I u . However, note that 

 1 /     F u u I u x , but that  1 / C     F u u I u x . 

 
 
The Lie Variation 
 
The Lie-variation is defined for spatial vectors and tensors as a variation holding the 
deformed basis constant.  For example, 
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The object is first pulled-back, the variation is then taken and finally a push-forward is 
carried out.  For example, analogous to 2.12.66, 
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For example, consider the Lie-variation of the Euler-Almansi strain e.  First, from 2.12.56b, 
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b .  From 2.12.40a, 
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2.13.2 Linearisation of Kinematic Functions 
 
Linearisation of a Function 
 
As for the variation, consider A, a scalar-, vector-, or tensor-valued function of u .  If u 
undergoes an increment u , then, analogous to 2.13.4,  
 

    ][ uAuAuuA u              (1.13.34) 

 
The directional derivative ][ uAu   in this context is also denoted by  uuA  , .  The 

linearization of A with respect to u is defined to be 
 

     uuAuAuuA  ,,L           (1.13.35) 
 
Using exactly the same method of calculation as was used for the variations above, the 
linearization of F and E, for example, are  
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where     uuε  gradgrad T
2
1  is the linearised small strain tensor ε . 

 
Linearisation of Variations of a Function 
 
One can also linearise the variation of a function.  For example, 
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The second term here is the directional derivative 
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This leads to an expression similar to A2 .  For example, for a scalar function  u  of a 
vector u, 
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Consider now the virtual Green-Lagrange strain, 2.13.11b, εFFE  T .  To carry out the 
linearization of E , it is convenient to first write it in the form 
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Then 
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2
1         (2.13.41) 

 
Recall that the variation u  is independent of u; this equation is being linearised with respect 
to u, and u  is unaffected by the linearization (see Fig. 2.13.3 below).  However, the motion, 
and in particular F, are affected by the increment in u.  Thus {▲Problem 4} 
 

  uuE  GradGradsym T           (2.13.42) 
 

 
 

Figure 2.13.3: linearisation 
 
As with the variational operator, one can define the linearization of a spatial tensor as 
involving a pull back, followed by the directional derivative, and finally the push forward 
operation.  Thus 
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2.13.3 Problems 
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1. Use Eqn. 2.2.22,  IFFE  T
2
1 , Eqn. 2.13.11,    uuuF  Grad,  , and Eqn. 2.2.8b, 

  1Gradgrad  Fvv , to show that εFFE  T , where ε  is the small strain tensor, Eqn. 
2.2.48. 

2. Use 2.13.11 to show that the variation of the inverse deformation gradient 1F  is 
uFF  grad11   .  [Hint: differente the relation IFF 1  by the product rule and then 

use the relation   1Gradgrad  Fvv  for vector v.] 

3. Use the definition FFC T  to show that T11 2   εFFC . 
4. Use the relation  AAA  T

2
1sym  to show that  
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2
1   

5. Use   uuεe  gradgrad T
2
1   to show that the  
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