Section 2.10

2.10 Convected Coordinates

An introduction to curvilinear coordinate was given in section 1.16, which serves as an
introduction to this section. As mentioned there, the formulation of almost all mechanics
problems, and their numerical implementation and solution, can be achieved using a
description of the problem in terms of Cartesian coordinates. However, use of curvilinear
coordinates allows for a deeper insight into a number of important concepts and aspects of, in
particular, large strain mechanics problems. These include the notions of the Push Forward
operation, Lie derivatives and objective rates.

As will become clear, note that all the tensor relations expressed in symbolic notation already
discussed, such as U = \/E , FNi =An,, F =1F, etc., are independent of coordinate system,
and hold also for the convected coordinates discussed here.

2.10.1 Convected Coordinates

In the Cartesian system, orthogonal coordinates X ' X' were used. Here, introduce the

curvilinear coordinates ®'. The material coordinates can then be written as

X =X(0'0°0% (2.10.1)
so X=X'E, and

dX =dX'E, =dO'G,, (2.10.2)

where G, are the covariant base vectors in the reference configuration, with corresponding

contravariant base vectors G', Fig. 2.10.1, with

G' -G, =4 (2.10.3)
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current
configuration

reference
configuration

Figure 2.10.1: Curvilinear Coordinates

The coordinate curves form a net in the undeformed configuration (over the surfaces of

constant ®'). One says that the curvilinear coordinates are convected or embedded, that is,
the coordinate curves are attached to material particles and deform with the body, so that

each material particle has the same values of the coordinates ®' in both the reference and
current configurations. The covariant base vectors are tangent the coordinate curves.

In the current configuration, the spatial coordinates can be expressed in terms of a new,
“current”, set of curvilinear coordinates

x=x(0',0%,0°1), (2.10.4)
with corresponding covariant base vectors g, and contravariant base vectors g', with
dx=dx'e, =dO'g, (2.10.5)

As the material deforms, the covariant base vectors g, deform with the body, being

“attached” to the body. However, note that the contravariant base vectors g' are not as such
attached; they have to be re-evaluated at each step of the deformation anew, so as to ensure
that the relevant relations, e.g. g' - g | = 5} , are always satisfied.

Example 1

Consider a pure shear deformation, where a square deforms into a parallelogram, as
illustrated in Fig. 2.10.2. In this scenario, a unit vector E, in the “square” gets mapped to a

vector g, in the parallelogram'. The magnitude of g, is 1/sine .

! This differs from the example worked through in section 1.16; there, the vector g, maintained unit magnitude.
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Y.

S A

E, g

Figure 2.10.2: A pure shear deformation

Consider now a parallelogram (initial condition) deforming into a new parallelogram (the
current configuration), as shown in Fig. 2.10.3.

g }/‘
E,e A

El’el

Figure 2.10.3: A pure shear deformation of one parallelogram into another

Keeping in mind that the vector g, will be of magnitude 1/sin« , the transformation
equations 2.10.1 for the configurations shown in Fig. 2.10.3 are?

Q' =X"- Ly @’=X*, =X’

tan ’ ’
X'=0'+ ®’, X*=0°, X’'=0’

tana

(2.10.6)

@lle_ 1 XZ, @2:X2, @3:X3

tan S
xX'=0'+ ! e, x*=0%, x'=06°

tan S

2 Constants have been omitted from these expressions (which represent the translation of the “parallelogram
origin” from the Cartesian origin).

Solid Mechanics Part I11 281 Kelly



Section 2.10

Following on from §1.16, Eqns. 1.16.19, the covariant base vectors are:

G, Zax. E., G, =E, G,= ! E +E, G;=E,
00 tan
(2.10.7)
oxX "™ 1
g = 20 €ns g =¢ 8= tan,Bel te€, g; =6,

and the inverse expressions

1
G +G,, E, =G,

E =G, E, =-
: : ’  tana (2.10.8)
) .10.
¢, =g, ez:_tanﬂgl+g2’ €, =8;

Line elements in the configurations can now be expressed as

dX =dX'E, X o - do'G,
00’
d"i d0' =d@'g,

dx =dx'e;, =—
00

(2.10.9)

The scale factors, i.e. the magnitudes of the covariant base vectors, are (see Eqns. 1.16.36)

H, =|G,|=1, H2:|G2|:Sina
i (2.10.10)
h, :|g1| =1, h, :|g2| = sin 3

The contravariant base vectors are (see Eqn. 1.16.23)

G‘:;?mEm, GI:EI—%EP G’=E,, G’=E,
. ana (2.10.11)
i a@l 1 1 2 3
=€ - €, g =€, g =¢

=——e,, =e
& ox™ " & =4 tan S

and the inverse expressions
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E =G'+ ! G’, E,=G’, E,=G’
taln‘” (2.10.12)
e =g + g, e, =g, e, =g

tan

The magnitudes of the contravariant base vectors, are

le‘G“z —, HZZ‘G2‘21
e (2.10.13)
hl — 1 — , h2 — 2 :1
o=l el
The metric coefficients are (see Eqns. 1.16.27)
| 1 0 . 12 1 0
tan o sin” « tan o
1 1 . : . 1
Gij—Gi-GJ: — 0, G'=G'-G'=|- 1 0
tana s« tan o
0 0 1 0 0 1
_ 1 : - C . ! O- (2.10.14)
tan S sin’ 8 tan
1 1 i P 1
ij —8i 8j s = = - 1 0
Ji =88, tan B sin’ S °=2-8 tan
0 0 1 0 0 1

The transformation determinants are (consistent with zero volume change), from Eqns.
1.16.32-34,

1 oX'
G =det[G; | =W=[de{ﬁD =Ja =1

(2.10.15)
1 X' R
R R G
|
Kelly
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Example 2

Consider a motion whereby a cube of material, with sides of length L, is transformed into a
cylinder of radius R and height H , Fig. 2.10.4.

%I "

2L,

Figure 2.10.4: a cube deformed into a cylinder
A plane view of one quarter of the cube and cylinder are shown in Fig. 2.10.5.

2

X2 X

Figure 2.10.5: a cube deformed into a cylinder

The motion and inverse motion are given by

J_2R (XY
N IR
2R X'X?
x = y(X), X' ="= (basis: e;) (2.10.16)
(X (xf
X} = H X3
LO
and
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2R
L,
X=y'(x), X’= 2RX (x'V +(x2f  (basis: E;) (2.10.17)
X3:ix3
H

Introducing a set of convected coordinates, Fig. 2.10.6, the material and spatial coordinates

are
_[Lle
2R

L

X=X(0',0%,0%), X? = ﬁj@%an@z (2.10.18)
X 3 — 56)3
H
and (these are simply cylindrical coordinates)
X' =0'cos®’

x=x(0',0%,0%), x> =0'sin®’ (2.10.19)

X’ =0’

A typical material particle (denoted by p) is shown in Fig. 2.10.6. Note that the position
vectors for p have the same ©' values, since they represent the same material particle.

X
2
X, o’ _7
4
i 2 2
: ’,’ @ \\ - @
1_- \ -~
.-*p (-
e 1 A 1
s 1 X I~o 1
R~ ! 1 BT X
S 1 1 S
‘\\| 7 S<
(RS
T o'
1
G)l
1
® =R

Figure 2.10.6: curvilinear coordinate curves
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2.10.2 The Deformation Gradient

With convected curvilinear coordinates, the deformation gradient is

F=g ®G'

=g, ®G'+g,®G’ +g,®G’, (2.10.20)
1 00

01 0| (59G')

00 1

The deformation gradient operates on a material vector (with contravariant components)
V =V'G,, resulting in a spatial tensor v =V'g, (with the same components V =V"), for

example,
FdX = (g ®G')d0'G; =d@'g, = dx (2.10.21)

To emphasise the point, line elements mapped between the configurations have the same
coordinates @': a line element d®'G, + d®°G, + d®’G, gets mapped to

(2,®G'+g,®G’ +g,®G’)(dO'G, +dO’G, + 1O’G, ) = dO'g, + dO’g, + dO’g,
(2.10.22)

This shows also that line elements tangent to the coordinate curves are mapped to new
elements tangent to the new coordinate curves; the covariant base vectors G, are a field of

tangent vectors which get mapped to the new field of tangent vectors g;, as illustrated in Fig.
2.10.7.

Figure 2.10.7: Vectors tangent to coordinate curves
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The deformation gradient F, the transpose F' and the inverses F~', F~", map the base

vectors in one configuration onto the base vectors in the other configuration (that the F~' and
F " in this equation are indeed the inverses of F and F' follows from 1.16.63):

F=g ®G' FG, =g,

F'=G,®¢g F'g =G,
_ > o : Deformation Gradient (2.10.23)

F—T :gl ®G| F7 GI :gl

FT =GI ®g| FTgI :GI

Thus the tensors F and F™' map the covariant base vectors into each other, whereas the

tensors F~' and F' map the contravariant base vectors into each other, as illustrated in Fig.
2.10.8.

contravariant basis

covariant basis VF/

F—l

Figure 2.10.8: the deformation gradient, its transpose and the inverses

It was mentioned above how the deformation gradient maps base vectors tangential to the
coordinate curves into new vectors tangential to the coordinate curves in the current
configuration. In the same way, contravariant base vectors, which are normal to coordinate
surfaces, get mapped to normal vectors in the current configuration. For example, the

contravariant vector G' is normal to the surface of constant @', and gets mapped through
F~' to the new vector g', which is normal to the surface of constant @' in the current
configuration.
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Example 1 continued

Carrying on Example 1 from above, in Cartesian coordinates, 4 corners of an initial
parallelogram (see Fig. 2.10.3) get mapped as follows:

(0,0) —(0,0)
1,0 L0
(1.0)>(1.0) (2.10.24)
(1 / tana,l) - (1 / tan,b’,l)
(1+ 1/ tana,l) - (1+ 1/ tanﬂ,l)
This corresponds to a deformation gradient with respect to the Cartesian bases:
1 II
F{O 1} (E,®F,).(e; ®¢;) (2.10.25)
where
IT ! ! (2.10.26)

- tan f tana

From the earlier work with example 1, the deformation gradient can be re-expressed in terms
of different base vectors:

F=(E, ®F,)+I1(E,®F,)+(E, ®F,)
(e, ®E,)+TII(e, ®E,)+(e, ®F,)

:gl®(Gl+$G2]+H(gl®G2)+(—ﬁgl+gzj®G2 (2.1027)
100

=g, ®G'=0 1 0|(g®G’)
00 1

which is Eqn. 2.10.20.

In fact, F can be expressed in a multitude of different ways, depending on which base vectors
are used. For example, from the above, F can also be expressed as
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F=(E ®E,)+II(E, ®F,)+(E,®E,)

g+t G2j®(G1+LG2j+HKGI+ ! G2j®(G2)}+[G2®G2]
tan o

tan o tana
1 1
tan
1 1 1 i -
= 0/(G'®G’)
tana tano tan S
0 0 1

(2.10.28)

(This can be verified using Eqn. 2.10.30a below.)

Components of F

The various components of F and its inverses and the transposes, with respect to the different
bases, are:

F=F,G' ®G’'=F'G,®G,=F’'G'®G, =F|G,®G'

=f,g' ®g' =1'g, ®g, =f'g ®g; =1jg ®g’
F')c¢'®c' =(F')G &G, =(F')¢'®G,=(F'),G, ®G’
:(f_l)ijgi®g- :(f_l)ijgi®gj :(f_l)}jgi@)gj :(f_l):ijgi®gj

F—l

F'=(F"),¢'®G' =(F')'G,®G,=(F')'6' ®G, = (F')|G, ®G’
:(fT)ijgi®g- :(fT)ijgi®gj :(fT)}jgi®gj :(fT):ijgi®gj
F)e 86 -( V6,06, - (F )6 06, - (F 7.6, 06
(f_T)ijgi®gj z(f_T)ijgi®gj =(f_T)‘ijgi®gj :(f_T):ijgi®gj

FfT

(2.10.29)

The components of F with respect to the reference bases {Gi }, {G } are
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F, =G FG, =G, g, = =%
00' 00’
F'=G'FG' =G*G' g,
4 : . (2.10.30)
F’=GFG’'=G*G, g,
F'=G'FG, =G' g, =2 &
oX"™ 00’
and similarly for the components with respect to the current bases.
Components of the Base Vectors in different Bases
The base vectors themselves can be expressed alternately:
g, =FG, =F,(G"®G!)G, =F"(G,®G'G,
=F,G"5/ =F!G,05] (2.10.31)

=F,G" =F"G,

showing that some of the components of the deformation gradient can be viewed also as
components of the base vectors. Similarly,

m

G, =F'g :(fil )migm :(fil)i gm (2.10.32)

For the contravariant base vectors, one has

¢ =F'G' =(F")"(G,®G,)6'=(F")(G"®G, )G’

-(F")"G,s' —(F")lG"s! (2.10.33)
T -l

and
G =F'g' =(t")"g, =(f" ). g" (2.10.34)

2.10.3 Reduction to Material and Spatial Coordinates

Material Coordinates

Suppose that the material coordinates X' with Cartesian basis are used (rather than the
convected coordinates with curvilinear basis G), Fig. 2.10.9. Then
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Gi:aXiEjzaxiEj:Ei gi:aiiej:aiiej
O - X', 00 X' , 00 1 oX!
00 g K g g g 09 X
ox! ox! ox? ox’?
and
. . i .
F-g ®G =g QF' =%ej ®E' = Gradx
F'=G,®g' =E, Qg =%Ei ®e’ = gradX
X

Section 2.10

(2.10.35)

(2.10.36)

which are Eqns. 2.2.2, 2.2.4. Thus Gradx is the notation for F and gradX is the notation for

F', to be used when the material coordinates X, are used to describe the deformation.

reference current
configuration configuration

R

X3

Figure 2.10.9: Material coordinates and deformed basis

Spatial Coordinates

Similarly, when the spatial coordinates X' are to be used as independent variables, then

j j i j
Gi:aXiEi:aXi E, gi:aiiej:aiiej:e_
O - X, 00 ox 00 OX’
G = gi- X g gi=ﬂej=a—x.ej=e
oX ! oX ! ox! ox’
and
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F=g ®G =¢, ®G' = axj e, ®E! = Gradx
x (2.10.38)
F'=G,®g =G, ®¢' = axi E, ®e' =gradX

The descriptions are illustrated in Fig. 2.10.10. Note that the base vectors G,, g; are not the
same in each of these cases (curvilinear, material and spatial).

>

F=g ®G'
g g,
— T
g
V X]
‘\/
F'=G,®¢g
XZ
2
i _ ‘a X,
F = X e, ®E’ = Gradx
ox!

_ox!

e
F' - —E, ®e’ = gradX X a
X

Figure 2.10.10: deformation described using different independent variables
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2.10.4 Strain Tensors
The Cauchy-Green tensors

The right Cauchy-Green tensor C and the left Cauchy-Green tensor b are defined by Eqns.
2.2.10,2.2.13,

C=F'F =(G'®g g, ®G!

)=9,G'®G’' =C,G' ®G!
C'=F'F'=(G,®g g’ ®G,)-

)=6

)=

9'G,®G,=(c") G, ®G
IJgi ®g; Ebljgi ®g;
G,g' ®g' =b") g ®g!

1 (2.10.39)
b=FF' =(g ®G')G' ®g,

T-F'F'=(g'®G,)G, ®g’

Thus the covariant components of the right Cauchy-Green tensor are the metric coefficients
g;; - This highlights the importance of C: the g; =g; -g; give a clear measure of the

deformation occurring. (It is possible to evaluate other components of C, e.g. C", and also
its components with respect to the current basis, but only the components C; with respect to

the reference basis are (normally) used in the analysis.)
The Stretch

Now, analogous to 2.2.9, 2.2.12,

ds? = dx - dx = dXCdX

(2.10.40)
dS* = dX-dX = dxb'dx
so that the stretches are, analogous to 2.2.17,
2

205 XX gkedk > dXicydX

ds®  |dx| |dX]

iS5 d i (2.10.41)
: Xp' X _dibldk > dR'(b),di’

2 dst iy oy
The Green-Lagrange and Euler-Almansi Tensors

The Green-Lagrange strain tensor E and the Euler-Almansi strain tensor e are defined
through 2.2.22,2.2.24,
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2 _ 2
957 =857 _ gx L (c - 1)dx = dXEdX
" 2d52 12 (2.10.42)
% = de(I —b™ )dx = dxedx

The components of E and e can be evaluated through (writing G =1, the identity tensor
expressed in terms of the base vectors in the reference configuration, and g =1, the identity

tensor expressed in terms of the base vectors in the current configuration)

E:%(C_G):%(gijGi ®G’ -GG’ ®Gj):%(9u‘ -G, )6' ®G' =E,G' ®G’
e:%(g_b_l):%(gijgi ®g’ _Gijgi ®gj):%(gij _Gij)gi ®g’ Eeijgi ®g

(2.10.43)

Note that the components of E and e with respect to their bases are equal, E; =¢; (although

this is not true regarding their other components, e.g. E" = e").
Example 1 continued

Carrying on Example 1 from above, consider now an example vector

_| W 2.10.44
V=l (E;) (2.10.44)

y

The contravariant and covariant components are

VoL y Vi
V=" tana '| (G,), V=| 1 (G") (2.10.45)
V, +V
Vv, tan y

The magnitude of the vector can be calculated through (see Eqn. 1.16.52 and 1.16.49)
E; E
V| =VV-V = N2 +V]
G, G, _ \Vj ? V
=\VV.V = IGV'V’ :\/(VX - j G, +2(VX - JVyG12 +Vy2G22 (2.10.46)

tano tano

¢ G Vv Vv ’
=\V-V =[GV, = [VG" +2V ( _+V jG12+(—X+V j G*
t \/ X “\tana y tano Y
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The new vector is obtained from the deformation gradient:

s 1 1V, 'V, +11V, )
0 1]V, L v, ( |
i 2.10.47
Gi 1 O||v, -——2 V, - ! v, ( )
=FV = tana | = tana "’ |(g;)
0 1
B v, L v,

In terms of the contravariant vectors:
V, +11V,

V=il ! VX+(1+

tan

y

| 2.10.48
nly, €] (21049

tan

Note that the contravariant components do not change with the deformation, but the covariant
components do in general change with the deformation.

The magnitudes of the vectors before and after deformation are given by the Cauchy-Green

strain tensors, whose coefficients are those of the metric tensors (the first of these is the same
as 2.10.46)

i g 8 g g &i
V-V=F'v.F'v=vF 'F'v=vb'v=V'g G g ®g'V'g =G, 'V’
. L (2.10.49)

G; G; G;

Gi G G . ) .
v-v=FV.FV=VF'FV=VCV =V‘G,g,G' ®GV'G, =g,V V'
From this, the magnitude of the vector after deformation is

vy = Jo vV = (v 47 )+ 1Y, (2v, + 11V, ) (2.10.50)

2.10.5 Intermediate Configurations
Stretch and Rotation Tensors

The polar decompositions F = RU = vR have been described in §2.2.5. The decompositions
are illustrated in Fig. 2.10.11. In the material decomposition, the material is first stretched by
U and then rotated by R. Let the base vectors in the associated intermediate configuration be
{gi } Similarly, in the spatial decomposition, the material is first rotated by R and then

stretched by v. Let the base vectors in the associated intermediate configuration in this case
be {G,}. Then, analogous to Eqn. 2.10.23, { AProblem 1}
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Figure 2.10.11: the material and spatial polar decompositions

UG, =g

N Uilgi =G,
UG =6

UTgi -G

Véi =8

N Vﬁlgi :éi
V—Téi :gi

VTgi :éi

—

{gi}

Note that U and v symmetric, U=U", v=v', so

U=§ QG =G'®g,
U'=G,®§ =§'®G,

V=g, ®G' =G dg;
V_1 =éi ®g| =gi ®él

5 UG, =g, Ug =G!'
U—lgI :GI, U—IGI gl
vG. =g, vg' =G'

N i —8i g

Similarly, for the rotation tensor, with R orthogonal, R™' =R",

R=G, ®G =G' ®G,
R'=G, ®G' =G' ®G,

R=g, ®gi :gi ®g;
R’ =g, ®gi :gi ®g;

Solid Mechanics Part 111

S RG, =G,, RG' =G
R'G, =G,, R'G'=G'
Rg =g, Rg' =¢
9 T _ A T 1 _ Al
R'g =g, Rg=¢g
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(2.10.51)

(2.10.52)

(2.10.53)

(2.10.54)

(2.10.55)

(2.10.56)
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The above relations can be checked using Eqns. 2.10.23 and F=RU, F=vR, v'' =RF ',

etc.

Various relations between the base vectors can be derived, for example,

éi'gj

o

o O

i'8

g =
.gj =

(RGi)'(jo):GiRTjo :Gi 'éj

]

=G'.
=G'.

> <> >

=G,-

Deformation Gradient Relationship between Bases

(2.10.57)

The various base vectors are related above through the stretch and rotation tensors. The
intermediate bases are related directly through the deformation gradient. For example, from

2.10.53a, 2.10.55b,

In the same way,

Tensor Components

¢ =UG, =UR'G, =F'G,

gi :FTéi
gi :Ffléi
éi :FiTg|
G' =Fg'

The stretch and rotation tensors can be decomposed along any of the bases
natural bases would be {G,} and {Gi }‘, for example,

U=U;G'®G’, U;=G,UG, =G, g
U=U"'G,®G,, U'=G'UG'=G"G’ g,
U=U'G,®G’', U, =G'UG,=G" g,
U=U/'G'®G,, U’'=G,UG'=§,-G’

with U, =U;,U" =U", U}, =U{,U; =U. One also has
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i j ! é 'gm
A . (2.10.61)
v=V.G, ®G', V. =G'VG,=G' ¢,
v=v/G' ®G,, v/ =GvG' =g, -G’
with similar symmetry. Also,
U= g e, U =gU's =G, g
v =g 08, L) =guig=g"G, ¢’
NI N mien (2.10.62)
u't=ugeg, L) =gug g6,
vl=0) g e, L) =g -6 g
and
. :(V_l)ugl ®g’, (V_l)u :giv_lgj :éu g
vi=(')gog,. (') =g'vig =g"G, ¢
_ (2.10.63)

with similar symmetry. Note that, comparing 2.10.60a, 2.10.61a, 2.10.62a, 2.10.63a and
using 2.10.57,

U=U,G' ®G’
v=v,G' ®G! ) )
U’ :J(U _l)ijgi ®gj Uij =(U 1)ij =V :(V 1)” (2.10.64)

vi= (V_l)ijgi ®g’

Now note that rotations preserve vectors lengths and, in particular, preserve the metric, i.e.,

A

G, =G, G,
;=88 = G =gi'gj

G, =G, G,

(2.10.65)

Thus, again using 2.10.57, and 2.10.60-2.10.63, the contravariant components of the above
tensors are also equal, UY = (U - )“ =vi = (V_1 )” .
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As mentioned, the tensors can be decomposed along other bases, for example,

v=vig ®g, Vi=g'vg'=G' g (2.10.66)

2.10.6 Eigenvectors and Eigenvalues
Analogous to §2.2.5, the eigenvalues of C are determined from the eigenvalue problem
det(C—2.I)=0 (2.10.67)
leading to the characteristic equation 1.11.5
Ao =1 g + A~ =0 (2.10.68)
with principal scalar invariants 1.11.6-7

I =trC=A =g + e, + ey
M. = 1[(trC)> - tr(C€?)] = 1(CIC) = CIC) )= A ey + Aerdes + Aesder (2.10.69)
I =detC = ‘C"ij|<C1iC2jC3k = AciAcades

The eigenvectors are the principal material directions Ni , with

(C-AIN, =0 (2.10.70)

The spectral decomposition is then

(2.10.71)

where A, = A7 and the A, are the stretches. The remaining spectral decompositions in

2.2.37 hold also. Note also that the rotation tensor in terms of principal directions is (see
2.2.35)

(2.10.72)

where n; are the spatial principal directions.
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2.10.7 Displacement and Displacement Gradients

Consider the displacement u of a material particle. This can be written in terms of covariant
components U, and u;:

u=x-X=UG'=ug'. (2.10.73)

The covariant derivative of u can be expressed as

ou
—=U_|G" = g 2.10.74
a@l m|| um|||g ( )

The single line refers to covariant differentiation with respect to the undeformed basis, i.e.
the Christoffel symbols to use are functions of the G;;. The double line refers to covariant

differentiation with respect to the deformed basis, i.e. the Christoffel symbols to use are
functions of the g;; .

Alternatively, the covariant derivative can be expressed as

u _ox X _,_g (2.10.75)
00 00 00
and so
g =G, +U,[G"=[s5" +u"| k5, =F"G,

(2.10.76)

The last equalities following from 2.10.31-32.

The components of the Green-Lagrange and Euler-Almansi strain tensors 2.10.43 can be
written in terms of displacements using relations 2.10.76 { A Problem 2} :

)
)

In terms of spatial coordinates, ®' = X', G, =E,, g, =(6xj /8Xi)ej, Ui|,— =0U, /0X ', the

1
Eij za(gij _Gij)zé(uih +UJ’L +Un|iUn

(2.10.77)

1 1 n
&; =§(9ij _Gij) E(Ui”j +UJHi —U,[,u

components of the Euler-Lagrange strain tensor are
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m n ) aU
Eij :l(gij _Gij):l aX i aL'5mn _5ij :l aUI- + J +6Ui.( aUk. (2.10.78)
2 2{ oX' oX! 2{oX?  oX' oX'oXx!

which is 2.2.46.

2.10.8 The Deformation of Area and Volume Elements

Differential Volume Element

Consider a differential volume element formed by the elements d®'G; in the undeformed
configuration, Eqn. 1.16.43:

dV =+/Gde'de’de’ (2.10.79)
where, Eqn. 1.16.31,1.16.34,
ﬁzm, G, =G, G, (2.10.80)

The same volume element in the deformed configuration is determined by the elements
do'g; :

dv = /gd®'de*de’ (2.10.81)

where

\/Ezw/dedgij |a g; =8 8; (2.8.82)

From 1.16.53 et seq., 2.10.11,
Jo=g g xg,
=F,FJF{G,-G,xG,
= FIFJFfe, G
:\/adetF

where &, is the Cartesian permutation symbol, and so the Jacobian determinant is (see
2.2.53)

(2.10.83)

J =ﬂ=ﬂ=detF (2.10.84)
v VG
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and detF is the determinant of the matrix with components F; .

Differential Area Element

Consider a differential surface (parallelogram) element in the undeformed configuration,

bounded by two vector elements dX® and dX®, and with unit normal N . Then the vector
normal to the surface element and with magnitude equal to the area of the surface is, using
1.16.54, given by

NdS =dX" xdX? =d®"'G, xdO?IG , =e!IdeV'de®IG*  (2.10.85)

where ei(jf) is the permutation symbol associated with the basis G,, i.e.

el¥) =£,G, -G, xG, = ,G. (2.10.86)
Using G* =F"g*, one has
NdS = £, /GdO"'dO?F"g" (2.10.87)

Similarly, the surface vector in the deformed configuration with unit normal n is

iids = dx x dx® = d@"'g, xd®?g, =e¥dO"'dO " (2.10.88)
where ei(jﬁ) is the permutation symbol associated with the basis g, , i.e.
el =g, 8 g, xg, = £y0 - (2.10.89)

Comparing the two expressions for the areas in the undeformed and deformed configurations,
2.10.87-88, one finds that

fids = \/gFTNdS = (det F)F "NdS (2.10.90)

which is Nanson’s relation, Eqn. 2.2.59. This is consistent with was said earlier in relation to

Fig. 2.10.8 and the contravariant bases: F~' maps vectors normal to the coordinate curves in
the initial configuration into corresponding vectors normal to the coordinate curves in the
current configuration.
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2.10.9 Problems

1. Derive the relations 2.10.51.
2. Userelations 2.10.76, with g; =g, -g; and G; =G, -G, to derive 2.10.77

)
)

E; :%(gij _Gij):%(uih +Uj‘i JrUn|iUn

1 1 n
ey =2 (0 -6y )= luf +u ], -,
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