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2.8 Objectivity and Objective Tensors 
 
 
2.8.1 Dependence on Observer 
 
Consider a rectangular block of material resting on a circular table.  A person stands and 
observes the material deform, Fig. 2.8.1a.  The dashed lines indicate the undeformed 
material whereas the solid line indicates the current state.  A second observer is standing 
just behind the first, but on a step ladder – this observer sees the material as in 2.8.1b.  A 
third observer is standing around the table, o45  from the first, and sees the material as in 
Fig. 2.8.1c. 
 
The deformation can be described by each observer using concepts like displacement, 
velocity, strain and so on..  However, it is clear that the three observers will in general 
record different values for these measures, since their perspectives differ.   
 
The goal in what follows is to determine which of the kinematical tensors are in fact 
independent of observer.  Since the laws of physics describing the response of a 
deforming material must be independent of any observer, it is these particular tensors 
which will be more readily used in expressions to describe material response. 
 

 
 

Figure 2.8.1: a deforming material as seen by different observers 
 
Note that Fig. 2.8.1 can be interpreted in another, equivalent, way.  One can imagine one 
static observer, but this time with the material moved into three different positions.  This 
viewpoint will be returned to in the next section. 
 
 
2.8.2 Change of Reference Frame 
 
Consider two frames of reference, the first consisting of the origin o and the basis { }ie , 
the second consisting of the origin *o  and the basis { }*

ie , Fig. 2.8.2.  A point x in space is 
then identified as having position vector iix ex =  in the first frame and position vector 

***
iix ex =  in the second frame. 

 
When the origins o and *o  coincide, *xx =  and the vector components ix  and *

ix  are 
related through Eqn. 1.5.3, *

jiji xQx = , or ijijii xQx eex *== , where [ ]Q  is the 

(a) (b) (c)
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transformation matrix 1.5.4, *
jiijQ ee ⋅= .  Alternatively, one has Eqn. 1.5.5, jjii xQx =* , 

or ****
ijjiii xQx eex == . 

 

 
 

Figure 2.8.2: two frames of reference 
 
With the shift in origin *ooa −= , one has 
 

******
iiijjiii axQx eeex +==                                       (2.8.1) 

 
where **

iia ea = .  Alternatively, 
 

iiijijii axQx eeex −== *                                        (2.8.2) 
 
where iia ea = , with jjii aQa =* . 
 
Formulae 2.8.1-2 relate the coordinates of the position vector to a point in space as 
observed from one frame of reference to the coordinates of the position vector to the same 
point as observed from a different frame of reference. 
 
Finally, consider the position vector x, which is defined relative to the frame ( )ieo, .  To 

an observer in the frame ( )** , ieo , the same position vector would appear as ( )*x , Fig. 

2.8.3.  Rotating this vector ( )*x  through TQ  (the tensor which rotates the basis { }*
ie  into 

the basis { }ie ) and adding the vector a then produces *x : 
 

( ) axQx += *T*                                                   (2.8.3) 
 
This relation will be discussed further below. 
 
 

x

o

*x

2e

1ea

x

*
1e

•• •
*
2e

*o

•



Section 2.8 

Solid Mechanics Part III                                                                                Kelly 265

 
Figure 2.8.3: Relation between vectors in Eqn. 2.8.3 

 
 
2.8.3 Change of Observer 
 
The change of frame encompassed by Eqns. 2.8.1-2 is more precisely called a passive 
change of frame, and merely involves a transformation between vector components.  One 
would say that there is one observer but that this observer is using two frames of 
reference.  Here follows a different concept, an active change of frame, also called a 
change in observer, in which there are two observers, each with their own frame of 
reference. 
 
An observer is someone who can measure relative positions in space (with a ruler) and 
instants of time (with a clock).  An event in the physical world (for example a material 
particle) is perceived by an observer as occurring at a particular point in space and at a 
particular time.  One can regard an observer O to be a map of an event E in the physical 
world to a point x in point space (cf. §1.2.5) and a real number t.  A single event E is 
recorded as the pair ( )t,x  by an observer O and, in general, by a different pair ( )*t,*x  by a 
second observer *O , Fig. 2.8.4. 
 

 
 

Figure 2.8.4: recordings by two observers of the same event 
 
Let the two observers record three points corresponding to three events, Fig. 2.8.5.  These 
points define vectors in space, as the difference between the points (cf. §1.2.5).  It is 
assumed that both observers “see” the same Euclidean geometry, that is, if one observer 
sees an ellipse, then the other observer will see the same ellipse, but perhaps positioned 
differently in space.  To ensure that this is so, observed vectors must be related through 
some orthogonal tensor Q, for example, 
 

( )0
*
0

* xxQxx −=−                                                 (2.8.4) 
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since this transformation will automatically preserve distances between points, and angles 
between vectors (see §1.10.7), for example, 
 

( ) ( ) ( ) ( ) ( ) ( )001001
*
0

**
0

*
1 xxxxxxQxxQxxxx −⋅−=−⋅−=−⋅−             (2.8.5) 

 

 
 

Figure 2.8.5: recordings of two observers of three separate events 
 
Although all orthogonal tensors Q do indeed preserve length and angles, it is taken that 
the Q in 2.8.4-5 is proper orthogonal, i.e. a rotation tensor (cf. §1.10.8), so that orientation 
is also preserved.  Further, it is assumed that )(tQQ = , which expresses the fact that the 
observers can move relative to each other over time. 
 
Observers must also agree on time intervals between events.  Let an observer O record a 
certain event at time t and a second observer *O  record the same event as occurring at 
time *t .  Then the times must be related through 
 

α+= tt *     Observer Time Transformation        (2.8.6) 
 
where α  is a constant.  If now the observers record a second event as occurring at 1t  and 

*
1t  say, one has tttt −=− 1

**
1  as required. 

 
The observer transformation 2.8.4 involves the vectors 0xx − and *

0
* xx −   and as such 

does not require the notion of origin or coordinate system; it is an abstract symbolic 
notation for an observer transformation.  However, an origin o for O  and *o  for *O  can 
be introduced and then the points **

00 ,,, xxxx  can be regarded as position vectors in 
space, Fig. 2.8.6. 
  
The transformation 2.8.4 can now be expressed in the oft-used format 
 

xQcx )()(* tt +=     Observer (Spatial) Transformation   (2.8.7) 
 
where 
 

0
*
0 )()( xQxc tt −=                                                    (2.8.8) 

 
The transformation 2.8.7 is called a Euclidean transformation, since it preserves the 
Euclidean geometry. 
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Figure 2.8.6: position vectors for two observers of the same events 
 
 
Coordinate Systems 
 
Each observer can introduce any Cartesian coordinate system, with basis vectors { }ie  and 
{ }*

ie  say.  They can then resolve the position vectors into vector components.  These basis 
vectors can be oriented with respect to each other in any way, that is, they will be related 
through ii Ree =* , where R is any rotation tensor.  Indeed, each observer can change their 
basis, effecting a coordinate transformation.  No attempt to introduce specific coordinate 
systems will be made here since they are completely unnecessary to the notion of observer 
transformation and would only greatly confuse the issue. 
 
Relationship to Passive Change of Frame 
 
Recall the passive change of frame encompassed in Eqns. 2.8.1-2.  If one substitutes the 
actual x for ( )*x  in Eqn. 2.8.3, one has: 
 

axQx += T*                                                    (2.8.9) 
 
This is clearly an observer transformation, relating the position vector as seen by one 
observer to the position vector as seen by a second observer, through an orthogonal tensor 
and a vector, as in Eqn. 2.8.7.  In the passive change of frame, ijQ  are the components of 

the orthogonal tensor ii eeQ ⊗= * , Eqn. 1.10.25, which maps the bases onto each other: 

ii Qee =* .  Thus the transformation 2.8.1-2 can be defined uniquely by the pair Q and a.  
In that sense, the passive change of frame does indeed define an active change of frame, 
i.e. a change of observer, through Eqn. 2.8.9.  However, the concept of observer discussed 
above is the preferred way of defining an observer transformation. 
 
 
2.8.4 Objective Vectors and Tensors 
 
The observer transformation 2.8.7 encapsulates the different viewpoints observers have of 
the physical world.  They will see the same objects, but in general they will see these 
objects oriented differently and located at different positions.  The goal now is to see 
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which of the kinematical tensors are independent of these different viewpoints.  As a first 
step, next is introduced the concept of an objective tensor. 
 
Suppose that different observers are examining a deforming material.  In order to describe 
the material, the observers take measurements.  This will involve measurements of spatial 
objects associated with the current configuration, for example the velocity or spin.  It will 
also involve material objects associated with the reference configuration, for example line 
elements in that configuration.  It will also involve two-point tensors such as the rotation 
or deformation gradient, which are associated with both the current and reference 
configurations. 
 
It is assumed that all observers observe the reference configuration to be the same, that is, 
they record the same set of points for the material particles in the reference configuration1.  
The observers then move relative to each other and their measurements of objects 
associated with the current configuration will in general differ.  One would expect (want) 
different observers to make the same measurement of material objects despite this relative 
movement; thus one says that material vectors and tensors are objective (material) 
vectors and objective (material) tensors if they remain unchanged under the observer 
transformation 2.8.6-7. 
 
A spatial vector u on the other hand is said to be an objective (spatial) vector if it 
satisfies the observer transformation (see 2.8.4):2 
 

Quu =*      Objectivity Requirement for a Spatial Vector    (2.8.10) 
 
for all rotation tensors Q.  An objective (spatial) tensor is defined to be one which 
transforms an objective vector into an objective vector.  Consider a tensor observed as 
T and *T  by two different observers.  Take an objective vector which is observed as v 
and *v , and let Tvu =  and *** vTu = .  Then, for u to be objective, 
 

*T* vQTQQTvQuu ===                                           (2.8.11) 
 
and so the tensor is objective provided 
 

T* QTQT =  Objectivity Requirement for a Spatial Tensor   (2.8.12) 
 
Various identities can be derived; for example, for objective vectors a and b, and 
objective tensors A and B, {▲Problem 1} 
 

                                                 
1 this does not affect the generality of what follows; the notion of objective tensor is independent of the 
chosen reference configuration 
2 the time transformation 2.8.6 is trivial and does not affect the relations to be derived 
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For a scalar, 
 

φφ =*       Objectivity Requirement for a Scalar       (2.8.14) 
 
In other words, an objective scalar is one which has the same value to all observers. 
 
Finally, consider a two-point tensor.  Such a tensor is said to be objective if it maps an 
objective material vector into an objective spatial vector.  Consider then a two-point 
tensor observed as T and *T .  Take an objective material vector which is observed as v 
and *v , and let Tvu =  and *** vTu = .  A material vector is objective if it is unaffected 
by an observer transformation, so 
 

** QTvQTvQuu ===                                           (2.8.15) 
 
and so the tensor is objective provided 
 

QTT =*  Objectivity Requirement for a Two-point Tensor   (2.8.16) 
 
Thus the objectivity requirement for a two-point tensor is the same as that for a spatial 
vector. 
 
 
2.8.5 Objective Kinematics 
 
Next are examined the various kinematic vectors and tensors introduced in the earlier 
sections, and their objectivity status is determined. 
 
The motion is observed by one observer as ),( tXχx =  and by a second observer as 

),( ** tXχx = .  The observer transformation gives 
 

)(),()(),( ** tttt cXχQXχ += ,     α+= tt *                            (2.8.17) 
 
and so the motion is not an objective vector, i.e. Qχχ ≠* . 
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The Velocity and Acceleration 
 
Differentiating 2.8.17 (and using the notation x&  instead of ( )t,Xχ&  for brevity), the 
velocity under the observer transformation is 
 

cxQxQx &&&& ++=*          (2.8.18) 
 
which does not comply with the objectivity requirement for spatial vectors, 2.8.10.  In 
other words, different observers will measure different magnitudes for the velocity.  The 
velocity expression can be put in a form similar to that of elementary mechanics (the 
“non-objective” terms are on the right), 
 

( ) ccxΩxQx Q &&& +−=− **            (2.8.19) 
 
where 
 

TQQΩQ
&=             (2.8.20) 

 
is skew-symmetric (see Eqn. 1.14.2); this tensor represents the rigid body angular velocity 
between the observers (see Eqn. 2.6.1).  Note that the velocity is objective provided 

oc0Q == && , , for which 00
* cxQx += , which is called a time-independent rigid 

transformation. 
 
Similarly, for the acceleration, it can be shown that 
 

( ) ( ) ( ) ccxΩcxΩcxΩxQx QQQ &&&&&&&&& +−+−−−=− 2*2**         (2.8.21) 
 
The first three terms on the right-hand side are called the Euler acceleration, the 
centrifugal acceleration and the Coriolis acceleration respectively.  The acceleration is 
objective provided c&  and Q are constant, for which )(0

* tcxQx +=  with oc =&& , which is 
called a Galilean transformation – where the two configurations are related by a rigid 
rotation and a translational motion with constant velocity. 
 
The Deformation Gradient 
 
Consider the motion ),( tXχx = .  As mentioned, observers observe the reference 
configuration to be the same: XX =* .  The deformation is then observed as XFx dd =  
and XFx dd ** = , so that 
 

XQFXQFxQx dddd ===*                                        (2.8.22) 
 
and 
 

QFF =*                                                         (2.8.23) 
 
and so, according to 2.8.16, the deformation gradient is objective. 
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The Cauchy-Green Strain Tensors 
 
For the right and left Cauchy-Green tensors,  
 

TTT*T**

TT*T**

QbQQQFFFFb
CQFQFFFC

===

===
                               (2.8.24) 

 
Thus the material tensor C and the spatial tensor b are objective3. 
 
The Jacobian Determinant 
 
For the Jacobian determinant, using 1.10.16a, 
 

( ) JJ ===== FFQQFF detdetdetdetdet **           (2.8.25) 
 
and4 so is objective according to 2.8.14. 
 
The Rotation and Stretch Tensors 
 
The polar decomposition is RUF = , where R is the orthogonal rotation tensor and U is 
the right stretch tensor.  Then *** URQRUQFF ≡== .  Since QR  is orthogonal, the 
expression **URQRU =  is valid provided  
 

UUQRR == ** ,     (2.8.26) 
 
Thus the two-point tensor R and the material tensor U are objective. 
 
The Velocity Gradient 
 
Allowing Q to be a function of time, for the velocity gradient, using 2.5.4, 1.9.18c,  
 

QΩQlQQFFQFQFFl +=+== −−
⋅

TT11*** )()( &&    (2.8.27) 
 
where QΩ  is the angular velocity tensor 2.8.20.  On the other hand, with wdl += , and 
separating out the symmetric and skew-symmetric parts, 
 

QΩQwQwQdQd +== T*T* ,       (2.8.28) 
 
Thus the velocity gradient is not objective.  This is not surprising given that the velocity is 
not objective.  However, significantly, the rate of deformation, a measure of the rate of 
stretching of material, is objective. 
 

                                                 
3 Some authors define a second order tensor to be objective only if 2.8.12 is satisfied, regardless of whether 
it is spatial, two-point or material; with this definition, F and C would be defined as non-objective 
4 Note that Q must be a rotation tensor, not just an orthogonal tensor, here 
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The Spatial Gradient 
 
Consider the spatial gradient of an objective vector t: 
 

x
tt

∂
∂

=grad ,     ( ) *

*
*grad

x
tt

∂
∂

=      (2.8.29) 

 
Since Qtt =* , the chain rule gives 
 

( )
x
tQ

x
Qt

x
x

x
t

x
t

∂
∂

=
∂

∂
≡

∂
∂

∂
∂

=
∂
∂ *

*

**

    (2.8.30) 

 
It follows that  

 

( ) T*grad Q
x
tQt

∂
∂

=        (2.8.31) 

 
Thus the spatial gradient is objective.  In general, it can be shown that the spatial gradient 
of a tensor field of order n is objective, for example the gradient of a scalar φ , 
{▲Problem 2} φgrad  .  Further, for a vector v, {▲Problem 3} vdiv  is objective. 
 
Objective Rates 
 
Consider an objective vector field u.  The material derivative u&  is not objective.  

However, the co-rotational derivative, Eqn. 2.6.12, wuuu −= &
o

 is objective.  To show 
this, contract 2.8.28b, TT* QQQwQw &+= , to the right with Q  to get an expression for 
Q& : 
 

QwQwQ −= *&        (2.8.32) 
 
 and then 
 

o

&&& uQQuwwuuQQuwuQuQuQuu +=−+=+=→=
⋅

**** )(             (2.8.33) 
 

Then 
o

uQuwu =−
⋅

*** , or 
oo

uQu =*)( , so that the co-rotational derivative of a vector is an 
objective vector. 
 
Rates of spatial tensors can also be modified in order to construct objective rates.  For 
example,  consider an objective spatial tensor T, so T* QTQT = .  Then 
 

TTT* QQTTQQQTQT &&& ++=
⋅

                                   (2.8.34) 
 
which is clearly not objective.  However, this can be re-arranged using 2.8.32 into 
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( ) T***** QTwwTTQwTTwT +−=+−
⋅

&                                    (2.8.35) 
 
and so the quantity 
 

TwwTT +−&                                                  (2.8.36) 
 
is an objective rate, called the Jaumann rate.  Other objective rates of tensors can be 
constructed in a similar fashion, for example the Cotter-Rivlin rate, defined by 
{▲Problem 4} 
 

TlTlT ++ T&                                                  (2.8.37) 
 
Summary of Objective Kinematic Objects 
 
Table 2.8.1 summarises the objectivity of some important kinematic objects: 
 
 objective definition Type Transformation 
Jacobian determinant   Scalar JJ =*  
Deformation gradient   2-point QFF =*  
Rotation  FvFUR 11 −− ==  2-point QRR =*  
Right Cauchy-Green 
strain  

 FFC T=  Material CC =*  

Green-Lagrange 
strain  

 ( )ICE −= 2
1  Material EE =*  

Rate of Green-
Lagrange strain 

  Material 
EE &=

⋅
*  

Right Stretch   CU =  Material UU =*  
Left Cauchy-Green 
strain  

 TFFb =  Spatial T* QbQb =  

Euler-Almansi strain   ( )1
2
1 −−= bIe  Spatial T* QeQe =  

Left Stretch   bv =  Spatial T* QvQv =  
Spatial Velocity 
Gradient 

× vl grad=  Spatial TT* QQQQll &+=  

Rate of Deformation  ( )T
2
1 lld +=  Spatial T* QdQd =  

Spin × ( )T
2
1 llw −=  Spatial TT* QQQQww &+=  

Table 2.8.1: Objective kinematic objects 
 
 
2.8.6 Objective Functions 
 
In a similar way, functions are defined to be objective as follows: 
 
• A scalar-valued function φ  of, for example, a tensor A, is objective if it 

transforms in the same way as an objective scalar, 
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( ) ( )AA φφ =*          (2.8.38) 
 
• A (spatial) vector-valued function a of a tensor A is objective if it transforms in 

the same way as an objective vector 
 

)()(* AQvAv =           (2.8.39) 
 
• A (spatial) tensor-valued function f of a tensor A is objective if it transforms 

according to 
 

T* )()( QAQfAf =            (2.8.40) 
 
Objective functions of the Deformation Gradient 
 
Consider an objective scalar-valued function φ  of the deformation gradient F, )(Fφ .  The 
function is objective if )(* Fφφ = .  But also, 
 

( ) ( )QFF φφφ == **                       (2.8.41) 
 
Using the polar decomposition theorem, ( ) ( )QRURU φφ = .  Choosing the particular 
rigid-body rotation TRQ =  then leads to 
 

( ) ( )URU φφ =                   (2.8.42) 
 
which leads to the reduced form 
 

( ) ( )UF φφ =                (2.8.43)   
 
Thus for the scalar function φ  to be objective, it must be independent of the rotational 
part of F, and depends only on the stretching part; it cannot be a function of the nine 
independent components of the deformation gradient, but only of the six independent 
components of the right stretch tensor. 
 
Consider next an objective (spatial) tensor-valued function f of the deformation gradient 
F, )(Ff .  According to the definition of objectivity of a second order tensor, 2.8.12: 
 

( ) T* QFQff =                 (2.8.44) 
 
But also, 
 

( ) ( )QFfFff == **                    (2.8.45) 
 
Again, using the polar decomposition theorem and choosing the particular rigid-body 
rotation TRQ =  leads to 
 

( ) ( )RRUfRUf T=        (2.8.46) 
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which leads to the reduced form 
 

( ) ( ) TRURfFf =      (2.8.47) 
 
Thus for f to be objective, its dependence on F must be through an arbitrary function of U 
together with a more explicit dependence on R, the rotation tensor 
 
Example 
 
Consider the tensor function ( )2T)( FFFf α= .  Then 
 

[ ] [ ] ( ) TT2T2T))(()( QFQfQFFQQFQFQFf === αα  
 
and so the objectivity requirement is satisfied.  According to the above, then, one can 
evaluate ( ) ( ) ( )2TT UURRUfRUf α== , and the reduced form is 
 

( ) T4T2T RRURUURf αα ==  
 

Also, since 2UC =  and ( )ICE −= 2
1 , alternative reduced forms are 

 
( ) ( ) T

3
T

2 , RERffRCRff ==  
■ 

 
Finally, consider a spatial tensor function f of a material tensor T.  Then 
 

)()()(,)()( **T* TfTfTfQTQfTf ===                         (2.8.48) 
 
It follows that 
 

TQfQf =                                                         (2.8.49) 
 
This is true only in the special case IQ =  and so is not true in general.  It follows that the 
function f is not objective. 
 
 
2.8.7 Problems 
 
1. Derive the relations 2.8.13 
2. Show that the spatial gradient of a scalar φ  is objective. 
3. Show that the divergence of a spatial vector v is objective.  [Hint: use the definition 

1.11.9 and identity 1.9.10e] 
4. Verify that the Rivlin-Cotter rate of a tensor T, TlTlT ++ T , is objective. 
 
 
 


