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2.7 Small Strain Theory 
 
When the deformation is small, from 2.2.43-4, 
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neglecting the product of ugrad  with UGrad , since these are small quantities.  Thus one 
can take uU gradGrad =  and there is no distinction to be made between the undeformed 
and deformed configurations.  The deformation gradient is of the form αIF += , where 
α  is small. 
 
 
2.7.1 Decomposition of Strain 
 
Any second order tensor can be decomposed into its symmetric and antisymmetric part 
according to 1.10.28, so that 
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where ε  is the small strain tensor 2.2.48 and Ω , the anti-symmetric part of the 
displacement gradient, is the small rotation tensor, so that F can be written as 
 

ΩεIF ++=    Small Strain Decomposition of the Deformation Gradient   (2.7.3) 
 
It follows that (for the calculation of e, one can use the relation ( ) δIδI −≈+ −1  for small 
δ ) 
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Rotation 
 
Since Ω  is antisymmetric, it can be written in terms of an axial vectorω , cf. §1.10.11, so 
that for any vector a, 
 

312113123, eeeωaωΩa Ω−Ω+Ω−=×=                              (2.7.5) 
 

The relative displacement can now be written as 
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The component of relative displacement given by Xω d×  is perpendicular to Xd , and so 
represents a pure rotation of the material line element, Fig. 2.7.1. 
 

 
 

Figure 2.7.1: a pure rotation 
 
 
Principal Strains 
 
Since ε  is symmetric, it must have three mutually orthogonal eigenvectors, the principal 
axes of strain, and three corresponding real eigenvalues, the principal strains, 

321 ,, eee ), which can be positive or negative, cf. §1.11.  The effect of ε  is therefore to 
deform an elemental unit sphere into an elemental ellipsoid, whose axes are the principal 
axes, and whose lengths are 321 1,1,1 eee +++ .  Material fibres in these principal 
directions are stretched only, in which case the deformation is called a pure deformation; 
fibres in other directions will be stretched and rotated. 
 
The term Xεd  in 2.7.6 therefore corresponds to a pure stretch along the principal axes.  
The total deformation is the sum of a pure deformation, represented by ε , and a rigid 
body rotation, represented by Ω .  This result is similar to that obtained for the exact finite 
strain theory, but here the decomposition is additive rather than multiplicative.  Indeed, 
here the corresponding small strain stretch and rotation tensors are εIU +=  and 

ΩIR += , so that 
 

ΩεIRUF ++==      (2.7.7) 
 
Example 
 
Consider the simple shear (c.f. Eqn. 2.2.40) 
 

3322211 ,, XxXxkXXx ==+=  
 
where k is small.  The displacement vector is 12eu kx=  so that 
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The deformation can be written as the additive decomposition 
 

XΩXεu ddd +=      or     XωXεu ddd ×+=  
 
with 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
002/
02/0

,
000
002/
02/0

k
k

k
k

Ωε  

 
and 3)2/( eω k−= .  For the rotation component, one can write  
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which, since for small θ , θθθ ≈≈ sin,1cos , can be seen to be a rotation through an 
angle 2/k−=θ  (a clockwise rotation). 
 
The principal values of ε  are 0,2/k±  with corresponding principal directions 

211 )2/1()2/1( een += , 212 )2/1()2/1( een +−=  and 33 en = . 
 
Thus the simple shear with small displacements consists of a rotation through an angle 

2/k  superimposed upon a pure shear with angle 2/k , Fig. 2.6.2. 
 

 
 

Figure 2.6.2: simple shear 
 

■  
 
 
2.7.2 Rotations and Small Strain 
 
Consider now a pure rotation about the 3X  axis (within the exact finite strain theory), 

XRx dd = , with  

2n 1n

θ+ =
2/k=θ



Section 2.7 

Solid Mechanics Part III                                                                                Kelly 261

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

100
0cossin
0sincos

θθ
θθ

R         (2.7.8) 

 
This rotation does not change the length of line elements Xd .  According to the small 
strain theory, however,  
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which does predict line element length changes, but which can be neglected if θ  is small.  
For example, if the rotation is of the order rad10 2− , then 4

2211 10−== εε .  However, if 
the rotation is large, the errors will be appreciable; in that case, rigid body rotation 
introduces geometrical non-linearities which must be dealt with using the finite 
deformation theory. 
 
Thus the small strain theory is restricted to not only the case of small displacement 
gradients, but also small rigid body rotations. 
 
 
2.7.3 Volume Change 
 
An elemental cube with edges of unit length in the directions of the principal axes 
deforms into a cube with edges of lengths 321 1,1,1 eee +++ , so the unit change in 
volume of the cube is 
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Since second order quantities have already been neglected in introducing the small strain 
tensor, they must be neglected here.  Hence the increase in volume per unit volume, called 
the dilatation (or dilation) is 
 

uε divtr321 ===++= iieeee
V
Vδ

     Dilatation              (2.7.10) 

 
Since any elemental volume can be constructed out of an infinite number of such 
elemental cubes, this result holds for any elemental volume irrespective of shape. 
 
 
2.7.4 Rate of Deformation, Strain Rate and Spin Tensors 
 
Take now the expressions 2.4.7 for the rate of deformation and spin tensors.  Replacing v 
in these expressions by u& , one has 
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For small strains, one can take the time derivative outside (by considering the ix  to be 
material coordinates independent of time): 
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The rate of deformation in this context is seen to be the rate of strain, εd &= , and the spin 
is seen to be the rate of rotation, Ωw &= . 
 
The instantaneous motion of a material particle can hence be regarded as the sum of three 
effects: 

(i) a translation given by u&  (so in the time interval tΔ  the particle has been 
displaced by tΔu& ) 

(ii) a pure deformation given by ε&  
(iii) a rigid body rotation given by Ω&  

 
 
2.7.5 Compatibility Conditions 
 
Suppose that the strains ijε  in a body are known.  If the displacements are to be 
determined, then the strain-displacement partial differential equations 
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need to be integrated.  However, there are six independent strain components but only 
three displacement components.  This implies that the strains are not independent but are 
related in some way.  The relations between the strains are called compatibility 
conditions, and it can be shown that they are given by 
 

0,,,, =−−+ ikjmjmikijkmkmij εεεε          (2.7.14) 
 
These are 81 equations, but only six of them are distinct, and these six equations are 
necessary and sufficient to evaluate the displacement field. 
 
 


