Section 2.6

2.6 Deformation Rates: Further Topics

2.6.1 Relationship between I, d, w and the rate of change of R
and U

Consider the polar decomposition F = RU . Since R is orthogonal, RR" =1, and a
differentiation of this equation leads to

Q, =RR" =-RR" (2.6.1)

with Q, skew-symmetric (see Eqn. 1.14.2). Using this relation, the expression 1=FF ',
and the definitions of d and w, Eqn. 2.5.7, one finds that { AProblem 1}

1=RUU'R" +Q,
w= %R(UU‘ ~UTUR"+Q,
= Rskew[UU' R" +Q, (2.6.2)
d= %R(UU‘I +U'UR"
= Rsym[UU" R

Note that , being skew-symmetric is consistent with w being skew-symmetric, and that
both w and d involve R, and the rate of change of U.

When the motion is a rigid body rotation, then U =0, and
w=Q, =RR" (2.6.3)

2.6.2 Deformation Rate Tensors and the Principal Material and
Spatial Bases

The rate of change of the stretch tensor in terms of the principal material base vectors is
3 . .
U:Z{AiNi ®N, + AN, ®N, + 4N, ®Ni} (2.6.4)
i=1

Consider the case when the principal material axes stay constant, as can happen in some
simple deformations. In that case, U and U™ are coaxial (see §1.11.5):

23: AN;®N; and U‘1=Z3: N; ® (2.6.5)

1R
i=1 i=1 ﬂ’
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with UU™" = U™'U and, as expected, from 2.5.25b, w = Q, = RR", that is, any spin is
due to rigid body rotation.

Similarly, from 2.2.37, and differentiating N, ® N, =1,
. 3 A A A A A A
E:Z{miNi ®N, +L AN, ®N; +1 N, ®Ni}. (2.6.6)
i=1

Also, differentiating Ni N ; =0, leads to N i N | = N i N ; and so the expression

. 3
N, =>W,N, (2.6.7)
m=1
is valid provided W;; are the components of a skew-symmetric tensor, W;; =-W,;. This

leads to an alternative expression for the Green-Lagrange tensor:

= i/miﬁi ®N, + igwmn(z; - 2N, ®N, (2.6.8)
i=1 m,n=1

Similarly, from 2.2.37, the left Cauchy-Green tensor can be expressed in terms of the
principal spatial base vectors:

b= iz?ﬁi ®n,, b= Z{Mi/iiﬁi ®h, + A0, ®h, + AR, ®ﬁi} (2.6.9)

3
i=1 i=1

Then, from inspection of 2.5.18c, b =1b +bl", the velocity gradient can be expressed as
{ AProblem 2}

3 [ 4 , s (4 :
1=> /1—'ﬁicx)ﬁi+ﬁi®ﬁi =y /1—'ﬁi®ﬁi—ﬁi®ﬁi (2.6.7)
i=1 i i=1 i

2.6.3 Rates of Change and the Relative Deformation

Just as the material time derivative of the deformation gradient is defined as

F= gF(X,t) = 3(%}
ot ot oX

one can define the material time derivative of the relative deformation gradient, cf. §2.3.2,
the rate of change relative to the current configuration:

(2.6.8)

7=t

. 0
F (x,t) = EFt (x,7)
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From 2.3.8, F,(x,7) = F(X,7)F(X,t)", so taking the derivative with respect to 7 (t is
now fixed) and setting 7 =t gives

F, (x,t) = F(X,H)F(X,t)"
Then, from 2.5 .4,
1=F (x,t) (2.6.9)

as expected — the velocity gradient is the rate of change of deformation relative to the
current configuration. Further, using the polar decomposition,

F.(x,7) =R, (x,7)U,(x,7)
Differentiating with respect to 7 and setting 7 =t then gives
F,(x,t) = R,(x,)U, (x,t) + R (X, 1)U, (x,1)
Relative to the current configuration, R, (x,t) = U, (x,t) =1, so, from 2.4.34,
1=U,(x,t) + R, (x,t) (2.6.10)

With U symmetric and R skew-symmetric, U, (x,t), R,(x,t) are, respectively, symmetric
and skew-symmetric, and it follows that

d="U,(x1)

2.6.11
w = Rt(x,t) ( )

again, as expected — the rate of deformation is the instantaneous rate of stretching and the
spin is the instantaneous rate of rotation.

The Corotational Derivative

The corotational derivative of a vector a is a =a —wa . Formally, it is defined through
o .1
a= E_rgﬁ{a(t +At) - R, (t+ Ad)a(t)}

= lim i {a(t +At) - [Rt (t) + AR, (t) +-- ')]a(t)}

= 1imi{a(t +At) - [T+ Atw(t) +--) fa(t)} (2.6.12)

At—0 At
- gn%)ﬁ {a(t + At) —a(t)} - w(b)a(t)

=a—wa
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The definition shows that the corotational derivative involves taking a vector a in the
current configuration and rotating it with the rigid body rotation part of the motion, Fig.
2.6.1. It is this new, rotated, vector which is compared with the vector a(t + At) , which

has undergone rotation and stretch.

at+At)=F| _ a(t)

R, a(t)

r=t+At a(t)

Figure 2.6.1: rotation and stretch of a vector

2.6.4 Rivlin-Ericksen Tensors

The n-th Rivlin-Ericksen tensor is defined as

An(t)zddTCt(r , n=0,1,2,-- (2.6.13)

=t

where C,(z) is the relative right Cauchy-Green strain. Since C, (Tl:t =I,A,=1I. To

evaluate the next Rivlin-Ericksen tensor, one needs the derivatives of the relative
deformation gradient; from 2.5.4, 2.3.8,

d

K (r)= di [FOF®) =1 Rt =1(c)F,(7) (2.6.14)
T T

Then, with 2.5.5a, d(F,(r)")/dz = F(z)'I(r)", and

A =[F ) 1) 1) ()]
~(10)+1)")

=2d

Thus the tensor A, gives a measure of the rate of stretching of material line elements (see
Eqn. 2.5.10). Similarly, higher Rivlin-Ericksen tensors give a measure of higher order

stretch rates, A, A , and so on.
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2.6.5 The Directional Derivative and the Material Time
Derivative

The directional derivative of a function T(t) in the direction of an increment in t is, by
definition (see, for example, Eqn. 1.15.27),

0, T[At] = T(t + At) — T(t) (2.6.15)
or
dT
O.TIA =~ At (2.6.16)

Setting At =1, and using the chain rule 1.15.28,

T =0,T[1]
=0 T[o.x[1]] (2.6.17)
=2 T[v]

The material time derivative is thus equivalent to the directional derivative in the direction
of the velocity vector.

2.6.6 Problems

1. Derive the relations 2.6.2.
2. Use2.6.9 to verify 2.5.18, b=1b +bl".
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