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2.6 Deformation Rates: Further Topics 
 
 
2.6.1 Relationship between l, d, w and the rate of change of R 

and U 
 
Consider the polar decomposition RUF = .  Since R is orthogonal, IRR =T , and a 
differentiation of this equation leads to 
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&& −=≡              (2.6.1) 

 
with RΩ  skew-symmetric (see Eqn. 1.14.2).  Using this relation, the expression 1−= FFl & , 
and the definitions of d and w, Eqn. 2.5.7, one finds that {▲Problem 1} 
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Note that RΩ  being skew-symmetric is consistent with w being skew-symmetric, and that 
both w and d involve R, and the rate of change of U. 
 
When the motion is a rigid body rotation, then 0U =& , and 
 

TRRΩw R
&==         (2.6.3) 

 
 
2.6.2 Deformation Rate Tensors and the Principal Material and 

Spatial Bases 
 
The rate of change of the stretch tensor in terms of the principal material base vectors is 
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Consider the case when the principal material axes stay constant, as can happen in some 
simple deformations.  In that case, U&  and 1−U  are coaxial (see §1.11.5): 
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with UUUU && 11 −− =  and, as expected, from 2.5.25b, TRRΩw R
&== , that is, any spin is 

due to rigid body rotation. 
 
Similarly, from 2.2.37, and differentiating INN =⊗ ii

ˆˆ , 
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Also, differentiating ijji δ=⋅NN ˆˆ  leads to jiji NNNN && ˆˆˆˆ ⋅−=⋅  and so the expression 
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is valid provided ijW  are the components of a skew-symmetric tensor, jiij WW −= .  This 
leads to an alternative expression for the Green-Lagrange tensor: 
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Similarly, from 2.2.37, the left Cauchy-Green tensor can be expressed in terms of the 
principal spatial base vectors: 
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Then, from inspection of 2.5.18c, Tbllbb +=& , the velocity gradient can be expressed as  
{▲Problem 2} 
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2.6.3 Rates of Change and the Relative Deformation 
 
Just as the material time derivative of the deformation gradient is defined as  
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one can define the material time derivative of the relative deformation gradient, cf. §2.3.2, 
the rate of change relative to the current configuration: 
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From 2.3.8, 1),(),(),( −= tt XFXFxF ττ , so taking the derivative with respect to τ  (t is 
now fixed) and setting t=τ  gives  
 

1),(),(),( −= tttt XFXFxF &&  
 
Then, from 2.5.4, 
 

),( tt xFl &=      (2.6.9) 
 
as expected – the velocity gradient is the rate of change of deformation relative to the 
current configuration.  Further, using the polar decomposition, 
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Differentiating with respect to τ  and setting t=τ  then gives 
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Relative to the current configuration, IxUxR == ),(),( tt tt , so, from 2.4.34, 
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With U symmetric and R skew-symmetric, ),(),,( tt tt xRxU &&  are, respectively, symmetric 
and skew-symmetric, and it follows that 
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again, as expected – the rate of deformation is the instantaneous rate of stretching and the 
spin is the instantaneous rate of rotation. 
 
The Corotational Derivative 

The corotational derivative of a vector a is waaa −≡ &
o

.  Formally, it is defined through 
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The definition shows that the corotational derivative involves taking a vector a in the 
current configuration and rotating it with the rigid body rotation part of the motion, Fig. 
2.6.1.  It is this new, rotated, vector which is compared with the vector )( tt Δ+a , which 
has undergone rotation and stretch. 
 

 
 

Figure 2.6.1: rotation and stretch of a vector 
 
 
2.6.4 Rivlin-Ericksen Tensors 
 
The n-th Rivlin-Ericksen tensor is defined as 
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where ( )τtC  is the relative right Cauchy-Green strain.  Since ( ) IC =

=tt τ
τ , IA =0 .  To 

evaluate the next Rivlin-Ericksen tensor, one needs the derivatives of the relative 
deformation gradient; from 2.5.4, 2.3.8,  
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Then, with 2.5.5a, ( )( ) ( ) ( )TTT / ττττ lFF tt dd = ,  and 
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Thus the tensor 1A  gives a measure of the rate of stretching of material line elements (see 
Eqn. 2.5.10).  Similarly, higher Rivlin-Ericksen tensors give a measure of higher order 
stretch rates, λλ &&&&& , , and so on. 
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2.6.5 The Directional Derivative and the Material Time 
Derivative 

 
The directional derivative of a function )(tT  in the direction of an increment in t is, by 
definition (see, for example, Eqn. 1.15.27), 
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or 
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Setting 1=Δt , and using the chain rule 1.15.28, 
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The material time derivative is thus equivalent to the directional derivative in the direction 
of the velocity vector. 
 
 
2.6.6 Problems 
 
1. Derive the relations 2.6.2. 
2. Use 2.6.9 to verify 2.5.18, Tbllbb +=& . 


