Section 2.5

2.5 Deformation Rates

In this section, rates of change of the deformation tensors introduced earlier, F, C, E, etc.,
are evaluated, and special tensors used to measure deformation rates are discussed, for
example the velocity gradient 1, the rate of deformation d and the spin tensor w.

2.5.1 The Velocity Gradient

The velocity gradient is used as a measure of the rate at which a material is deforming.

Consider two fixed neighbouring points, x and x + dx, Fig. 2.5.1. The velocities of the
material particles at these points at any given time instant are v(x) and v(x+ dx), and

v(x +dx) = v(x)+ @dx ,
ox

The relative velocity between the points is

dV:@dxsldx (2.5.1)
ox

with 1 defined to be the (spatial) velocity gradient,

ov
l=—=gradv, I =— Spatial Velocity Gradient (2.5.2)
%) ¢ OX

Figure 2.5.1: velocity gradient

Expression 2.5.1 emphasises the tensorial character of the spatial velocity gradient,
mapping as it does one vector into another. Its physical meaning will become clear when
it is decomposed into its symmetric and skew-symmetric parts below.

The spatial velocity gradient is commonly used in both solid and fluid mechanics. Less

commonly used is the material velocity gradient, which is related to the rate of change of
the deformation gradient:

Gmdv:m:i(wjzﬁ(wjzp (2.5.3)
oX oX ot ot oX
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and use has been made of the fact that, since X and t are independent variables, material

time derivatives and material gradients commute.

25.2 Material Derivatives of the Deformation Gradient

The spatial velocity gradient may be written as

O _NX_0 ()X _2(o)X
ox o0Xox oX\ot)ox ot\oX)ox

or 1 =FF' so that the material derivative of F can be expressed as

F =1F| Material Time Derivative of the Deformation Gradient (2.5.4)
Also, it can be shown that { A Problem 1}
P =
F'——FI (2.5.5)
FT—1'F"

2.5.3 The Rate of Deformation and Spin Tensors

The velocity gradient can be decomposed into a symmetric tensor and a skew-symmetric
tensor as follows (see §1.10.10):
(2.5.6)

where d is the rate of deformation tensor (or rate of stretching tensor) and w is the
spin tensor (or rate of rotation, or vorticity tensor), defined by

ov. OV,
d=1(+17) d, Y
2 2\ ox;  0Ox
Rate of Deformation and Spin Tensors
1 T 1] ov; é)Vi
welfom) w2l
2 2\ 0x;  OX
(2.5.7)
The physical meaning of these tensors is next examined.
Kelly
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The Rate of Deformation

Consider first the rate of deformation tensor d and note that
d
ldx = dv = a(dx) (2.5.8)

The rate at which the square of the length of dx is changing is then

)

d 2\ d d
aﬂdx| )— a(dx-dx)— 2dx -a(dx)— 2dxldx = 2dxddx

ide|2 ): 2|dx|i(]dx
dt t (2.5.9)

2 , then leads

the last equality following from 2.5.6 and 1.10.31e. Dividing across by 2|dx

to

A s A
B =ndn Rate of stretching per unit stretch in the direction n (2.5.10)

where 1 = |dx| /|dX| is the stretch and n = dx /|dx| is a unit normal in the direction of dx.

Thus the rate of deformation d gives the rate of stretching of line elements. The diagonal
components of d, for example

d,, =ede,,
represent unit rates of extension in the coordinate directions.

Note that these are instantaneous rates of extension, in other words, they are rates of
extensions of elements in the current configuration at the current time; they are not a
measure of the rate at which a line element in the original configuration changed into the
corresponding line element in the current configuration.

Note:
e Eqn. 2.5.10 can also be derived as follows: let N be a unit normal in the direction of dX, and
,or A4 =FN.

n be the corresponding unit normal in the direction of dx. Then ﬁ|dx| = FN|dX
Differentiating gives n1+ A = FN =IFN or nA + a4 = 1A . Contracting both sides with
leads to ﬁ-ﬁ+ﬁ-ﬁ(ﬂl//1):ﬁlﬁ. But n-n=1— d(n-n)dt =0 so, by the chainrule, n-n =0

(confirming that a vector n of constant length is orthogonal to a change in that vector dn ), and
the result follows

Consider now the rate of change of the angle € between two vectors dx”, dx'*. Using
2.5.8 and 1.10.3d,
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%(dx“) Ldx?)= %(dx(” )-dx® +dx® -%(dx(z))
=1dx" - dx® +dx® - 1dx? (2.5.11)
= (l +17 )dx(l) -dx®?

=2 dx"ddx®

which reduces to 2.5.9 when dx = dx®. An alternative expression for this dot product
is

%de(” de(z)‘cos 6): %de“)udxm‘cos0+%de(z)udx(”‘cosﬁ—sin@é‘dx(” de(z)‘
Equ(l)‘) Equm‘
(AT s+ At o5 —sind6 ‘dx“)de(z)‘
Fy e
(2.5.12)
Equating 2.5.11 and 2.5.12 leads to
2h,dh, =[%+j—2}:050—sin09 (2.5.13)
1 2

where 4, = ‘dx(i)‘/‘dX“)‘ is the stretch and f, = dx /‘dx(i)‘ is a unit normal in the

direction of dx .

It follows from 2.5.13 that the off-diagonal terms of the rate of deformation tensor
represent shear rates: the rate of change of the right angle between line elements aligned

with the coordinate directions. For example, taking the base vectors e, =n,, e, =n,,
2.5.13 reduces to

d,=-—6, (2.5.14)

where 6,, is the instantaneous right angle between the axes in the current configuration.
The Spin

Consider now the spin tensor w; since it is skew-symmetric, it can be written in terms of
its axial vector @ (Eqn. 1.10.34), called the angular velocity vector:
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o =-Wy,e, +W;,e, —W,e;
AT A NN 0515
2\ ox, ox 2{ 0%, oX 20 0% 0X,
=lcurlv
2

(The vector 2@ is called the vorticity (or spin) vector.) Thus when d is zero, the motion
consists of a rotation about some axis at angular velocity @ = |co| (cf. the end of §1.10.11),

with v =@ xr, r measured from a point on the axis, and wr =@ xr=v.

On the other hand, when 1=d, w =0, one has ® =0, and the motion is called
irrotational.

Example (Shear Flow)

Consider a simple shear flow in which the velocity profile is “triangular” as shown in
Fig. 2.5.2. This type of flow can be generated (at least approximately) in many fluids by
confining the fluid between plates a distance h apart, and by sliding the upper plate over
the lower one at constant velocity V. If the material particles adjacent to the upper plate
have velocity Ve, , then the velocity field is v = jX,e,, where y =V /h. This is a steady
flow (0v /ot =0); at any given point, there is no change over time. The velocity gradient
is I = e, ®e, and the acceleration of material particles is zero: a=1v =0. The rate of
deformation and spin are

Jo7o Jo 7o

d==|7 0 0|, =—|-7 0 0
2|7 A
000 0 0 0

and, from 2.5.14, y = —6,,, the rate of change of the angle shown in Fig. 2.5.2.

\Y
—
> >
——/ ¢ >
h 2
—> —>
Tg v=Vi(X)e
> 2ye M

Figure 2.5.2: shear flow

The eigenvalues of d are 4 =0, + /2 (detd =0) and the principal invariants, Eqn.
1.11.17,are I, =0, I, =—1 7% 1, =0. For A =+y/2, the eigenvector is

n =[1 1 0] andfor 1=-y/2,itisn, =[-1 1 O] (for A=0 itis e,). (The
eigenvalues and eigenvectors of w are complex.) Relative to the basis of eigenvectors,
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72 0 0
d=| 0 -y/2 0
0 0 0

so at 45° there is an instantaneous pure rate of stretching/contraction of material.

n
2.5.4  Other Rates of Strain Tensors
From 2.2.9,2.2.22,
d 1. :

——(dx-dx) = dX—CdX = dXEdX (2.5.16)

2 dt 2
This can also be written in terms of spatial line elements:

dXEdX = dx[F "EF ' dx (2.5.17)

But from 2.5.9, these also equal dxddx, which leads to expressions for the material time
derivatives of the right Cauchy-Green and Green-Lagrange strain tensors (also given here
are expressions for the time derivatives of the left Cauchy-Green and Euler-Almansi
tensors { A Problem 3})

C =2F"dF
E=F"dF
b=Ib+bl"

ée=d-1"e—el

(2.5.18)

Note that

[Edt=[dE
so that the integral of the rate of Green-Lagrange strain is path independent and, in
particular, the integral of E around any closed loop (so that the final configuration is the

same as the initial configuration) is zero. However, in general, the integral of the rate of
deformation,

j ddt

is not independent of the path — there is no universal function h such that d = dh/dt with
jddt = jdh . Thus the integral J‘ddt over a closed path may be non-zero, and hence the

integral of the rate of deformation is not a good measure of the total strain.
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The Hencky Strain

The Hencky strain is, Eqn. 2.2.37, h = z; (In 4 )A, ® A, , where n, are the principal
spatial axes. Thus, if the principal spatial axes do not change with time,
h= z; (/ii /A, )ﬁi ®n, . With the left stretch v = Z; An, ®n, , it follows that (and

similarly for the corresponding material tensors), H=InU=UU", h=Inv=vwv".

For example, consider an extension in the coordinate directions, so
F=U=v=Y" An, ®n; = 23 AN, ® N, . The motion and velocity are
i=1 i=1

so d, = /ii / Z; (no sum), and d = h. Further, h = _[ ddt . Note that, as mentioned above,

this expression does not hold in general, but does in this case of uniform extension.

255 Material Derivatives of Line, Area and Volume Elements

The material derivative of a line element d(dx)/dt has been derived (defined) through
2.4.8. For area and volume elements, it is necessary first to evaluate the material

derivative of the Jacobian determinant J. From the chain rule, one has (see Eqns 1.15.11,
1.15.7)

. d oJ

J=—0F)=—:F=JF":F 2.5.19
L O)=— (2.5.19)
Hence { A Problem 4}
J=Jtr()
= Jtr(gradv) (2.5.20)
= Jdivv

Since 1 =d+w and trw = 0, it also follows that J = Jtrd.

As mentioned earlier, an isochoric motion is one for which the volume is constant — thus
any of the following statements characterise the necessary and sufficient conditions for an
isochoric motion:

J=1, J=0, divw=0, trd=0, F':F=0 (2.5.21)

Applying Nanson’s formula 2.2.59, the material derivative of an area vector element is
{ AProblem 6}
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%(ﬁds) = (divv—17 Jads (2.5.22)

Finally, from 2.2.53, the material time derivative of a volume element is

%(dv) = %(Jdv )=JdV =divvdv (2.5.23)

Example (Shear and Stretch)

Consider a sample of material undergoing the following motion, Fig. 2.4.3.

X, = X, +kAX, Xy =% =k,
X, = AX, , X, %2
X =X X, =X,
with 2= A(t), k =k(t).

XoXl g
<>

5$ /
k

A
%
X5 X

Figure 2.4.3: shear and stretch

The deformation gradient and material strain tensors are

1 ki 0 I ki 0 0 LKA 0
F=[0 4 0| C=|ki (1+K)7 0 E=|ika 1(2(1+k*)-1) o],
0 0 1 o 0 1 0 0 0

the Jacobian J =detF = 4, and the spatial strain tensors are
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1+k22 k2 0 0 ok 0
bo| k2 2 o eo|ik 10K 2’1 -
p
0 0 1 0 0 0

This deformation can also be expressed as a stretch followed by a simple shear:

1 kK 01 0 O
F=/0 1 00 4 O
0 0 110 0 1
The velocity is
(k4 + k)X, (k+ k(A7 2)K,
dx . :
v==Xol X, L v (ak
dt
0 0
The velocity gradient is
0 k+k(i/4) 0
=%_lo i o
dx
0 0 0
and the rate of deformation and spin are
0 tk+k(is2) o 0 tk+k(ira) o
d=[1[k+k(isa)] A2 0| w=[-tk+k(isa) 0 0
0 0 0 0 0 0
Also
0 K + kA 0
C=2F"dF =| Ak +ki 24(kik+ (k> +1)) ©
0 0 0

As expected, from 2.5.20,

J=Jtr(@)=3(i/2)=4
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256 Problems

(a) Differentiate the relation I = FF ™' and use 2.5.4, F =1F, to derive 2.5.5b,

Fl=—F.
(b) Differentiate the relation I = F"F" and use 2.5.4, F =1F, and 1.10.3¢ to derive

25.5¢, F' =-1"F".

For the velocity field
Vi = XXy, V, =2X0X;, Vg =3XX,X,
determine the rate of stretching per unit stretch at (2,0,1) in the direction of the unit
vector
(4e, —3e,)/5
And in the direction of e, ?
(a) Derive the relation 2.5.18a, C = 2F"dF directly from C =F'F
(b) Use the definitions b=FF" and e = (I1-b™')/2 to derive the relations
2.5.18c,d: b=1b+bl", é=d-1Te—el

Use 2.5.4,2.5.19, 1.10.3h, 1.10.6, to derive 2.5.20.
For the motion X, =3X t—t>, x, = X, + X,t, X, = tX,, verify that F =IF . What is
the ratio of the volume element currently occupying (1,1,1) to its volume in the

undeformed configuration? And what is the rate of change of this volume element,
per unit current volume?
Use Nanson’s formula 2.2.59, the product rule of differentiation, and 2.5.20, 2.5.5c,

to derive the material time derivative of a vector area element, 2.5.22 (note that N ,
a unit normal in the undeformed configuration, is constant).
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