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2.4 Material Time Derivatives 
 
The motion is now allowed to be a function of time,  t,Xχx  , and attention is given to 
time derivatives, both the material time derivative and the local time derivative. 
 
 
2.4.1 Velocity & Acceleration 
 
The velocity of a moving particle is the time rate of change of the position of the particle.  
From 2.1.3, by definition,  
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In the motion expression  t,Xχx  , X and t are independent variables and X is 
independent of time, denoting the particle for which the velocity is being calculated.  The 
velocity can thus be written as tt  /),(Xχ  or, denoting the motion by ),( tXx , as 

dttd /),(Xx  or tt  /),(Xx . 
 
The spatial description of the velocity field may be obtained from the material description 
by simply replacing X with x, i.e. 
 

 ttt ),,(),( 1 xχVxv                                                   (2.4.2) 
 
As with displacements in both descriptions, there is only one velocity, ),(),( tt xvXV   –  
they are just given in terms of different coordinates. 
 
The velocity is most often expressed in the spatial description, as 
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To be precise, the right hand side here involves x which is a function of the material 
coordinates, but it is understood that the substitution back to spatial coordinates, as in 
2.4.2, is made (see example below). 
 
Similarly, the acceleration is defined to be 
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Example 
 
Consider the motion 
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The velocity and acceleration can be evaluated through 
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One can write the motion in the spatial description by inverting the material description: 
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Substituting in these equations then gives the spatial description of the velocity and 
acceleration: 
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2.4.2 The Material Derivative 
 
One can analyse deformation by examining the current configuration only, discounting 
the reference configuration.  This is the viewpoint taken in Fluid Mechanics – one focuses 
on material as it flows at the current time, and does not consider “where the fluid was”.  
In order to do this, quantities must be cast in terms of the velocity.  Suppose that the 
velocity in terms of spatial coordinates, ),( txvv   is known; for example, one could 
have a measuring instrument which records the velocity at a specific location, but the 
motion χ  itself is unknown.  In that case, to evaluate the acceleration, the chain rule of 
differentiation must be applied: 
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or 
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       acceleration (spatial description)      (2.4.5) 

 
The acceleration can now be determined, because the derivatives can be determined 
(measured) without knowing the motion. 
 
In the above, the material derivative, or total derivative, of the particle’s velocity was 
taken to obtain the acceleration.  In general, one can take the time derivative of any 
physical or kinematic property    expressed in the spatial description: 
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       Material Time Derivative     (2.4.6) 

 
For example, the rate of change of the density ),( tx   of a particle instantaneously at 
x is 
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The Local Rate of Change 
 
The first term, t / , gives the local rate of change of density at x whereas the second 
term gradv  gives the change due to the particle’s motion, and is called the convective 
rate of change. 
 
Note the difference between the material derivative and the local derivative.  For example, 
the material derivative of the velocity, 2.4.5 (or, equivalently, ( , ) /d t dtV X  in 2.4.4, with 
X fixed) is not the same as the derivative ( , ) /t t v x  (with x fixed).  The former is the 
acceleration of a material particle X.  The latter is the time rate of change of the velocity 
of particles at a fixed location in space; in general, different material particles will occupy 
position x at different times. 
 
The material derivative dtd /  can be applied to any scalar, vector or tensor: 
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Another notation often used for the material derivative is DtD / : 
 

Df df
f

Dt dt
                 (2.4.9) 

 
Steady and Uniform Flows 
 
In a steady flow, quantities are independent of time, so the local rate of change is zero 
and, for example, v  grad .  In a uniform flow, quantities are independent of 
position so that, for example, t /  
 
Example 
 
Consider again the previous example.  This time, with only the velocity ( , )tv x  known, 
the acceleration can be obtained through the material derivative: 
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as before. 

■  
 
 
The Relationship between the Displacement and Velocity 
 
The velocity can be derived directly from the displacement 2.2.42: 
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or 
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When the displacement field is given in material form one has 
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2.4.3 Problems 
 
1. The density of a material is given by  

xx 


 te 2

  

The velocity field is given by 

213132321 2,2,2 xxvxxvxxv   

Determine the time derivative of the density  (a) at a certain position x  in space, 
and (b) of a material particle instantaneously occupying position x. 
 


