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1 Vectors & Tensors 
 
 
The mathematical modeling of the physical world requires knowledge of quite a few 
different mathematics subjects, such as Calculus, Differential Equations and Linear 
Algebra.  These topics are usually encountered in fundamental mathematics courses.  
However, in a more thorough and in-depth treatment of mechanics, it is essential to 
describe the physical world using the concept of the tensor, and so we begin this book 
with a comprehensive chapter on the tensor. 
 
The chapter is divided into three parts.  The first part covers vectors (§1.1-1.7).  The 
second part is concerned with second, and higher-order, tensors (§1.8-1.15).  The second 
part covers much of the same ground as done in the first part, mainly generalizing the 
vector concepts and expressions to tensors.  The final part (§1.16-1.19) (not required in 
the vast majority of applications) is concerned with generalizing the earlier work to 
curvilinear coordinate systems.  
 
The first part comprises basic vector algebra, such as the dot product and the cross 
product; the mathematics of how the components of a vector transform between different 
coordinate systems; the symbolic, index and matrix notations for vectors; the 
differentiation of vectors, including the gradient, the divergence and the curl; the 
integration of vectors, including line, double, surface and volume integrals, and the 
integral theorems. 
 
The second part comprises the definition of the tensor (and a re-definition of the vector); 
dyads and dyadics; the manipulation of tensors; properties of tensors, such as the trace, 
transpose, norm, determinant and principal values; special tensors, such as the spherical, 
identity and orthogonal tensors; the transformation of tensor components between 
different coordinate systems; the calculus of tensors, including the gradient of vectors and 
higher order tensors and the divergence of higher order tensors and special fourth order 
tensors. 
 
In the first two parts, attention is restricted to rectangular Cartesian coordinates (except 
for brief forays into cylindrical and spherical coordinates).  In the third part, curvilinear 
coordinates are introduced, including covariant and contravariant vectors and tensors, the 
metric coefficients, the physical components of vectors and tensors, the metric, coordinate 
transformation rules, tensor calculus, including the Christoffel symbols and covariant 
differentiation, and curvilinear coordinates for curved surfaces. 
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1.1 Vector Algebra 
 
 
1.1.1 Scalars 
 
A physical quantity which is completely described by a single real number is called a 
scalar.  Physically, it is something which has a magnitude, and is completely described 
by this magnitude.  Examples are temperature, density and mass.  In the following, 
lowercase (usually Greek) letters, e.g.  ,, , will be used to represent scalars. 
 
 
1.1.2 Vectors 
 
The concept of the vector is used to describe physical quantities which have both a 
magnitude and a direction associated with them.  Examples are force, velocity, 
displacement and acceleration. 
 
Geometrically, a vector is represented by an arrow; the arrow defines the direction of the 
vector and the magnitude of the vector is represented by the length of the arrow, Fig. 
1.1.1a. 
 
Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q. 
 
The magnitude (or length) of a vector is denoted by a  or a.  It is a scalar and must be 

non-negative.  Any vector whose length is 1 is called a unit vector; unit vectors will 
usually be denoted by e. 
 

 
 

Figure 1.1.1: (a) a vector; (b) addition of vectors 
 
 
1.1.3 Vector Algebra 
 
The operations of addition, subtraction and multiplication familiar in the algebra of 
numbers (or scalars) can be extended to an algebra of vectors. 
 
 
 
 

a
b

c

(a) (b) 
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The following definitions and properties fundamentally define the vector: 
1. Sum of Vectors: 

The addition of vectors a and b is a vector c formed by placing the initial point of 
b on the terminal point of a and then joining the initial point of a to the terminal 
point of b.  The sum is written bac  .  This definition is called the 
parallelogram law for vector addition because, in a geometrical interpretation of 
vector addition, c is the diagonal of a parallelogram formed by the two vectors a 
and b, Fig. 1.1.1b.  The following properties hold for vector addition: 

  a b b a    … commutative law 
        a b c a b c  … associative law 

 
2. The Negative Vector: 

For each vector a there exists a negative vector.  This vector has direction 
opposite to that of vector a but has the same magnitude; it is denoted by a .  A 
geometrical interpretation of the negative vector is shown in Fig. 1.1.2a. 
 

3. Subtraction of Vectors and the Zero Vector: 
The subtraction of two vectors a and b is defined by )( baba  , Fig. 
1.1.2b.  If ba   then ba   is defined as the zero vector (or null vector) and is 
represented by the symbol o.  It has zero magnitude and unspecified direction.  A 
proper vector is any vector other than the null vector.  Thus the following 
properties hold: 

  oaa

aoa




 

 
4. Scalar Multiplication: 

The product of a vector a by a scalar   is a vector a  with magnitude   times 

the magnitude of a and with direction the same as or opposite to that of a, 
according as   is positive or negative.  If 0 , a  is the null vector.  The 
following properties hold for scalar multiplication: 
  aaa     … distributive law, over addition of scalars 

  baba     … distributive law, over addition of vectors 
aa )()(     … associative law for scalar multiplication 

 

 
 

Figure 1.1.2: (a) negative of a vector; (b) subtraction of vectors 
 

(a) (b) 

a
a

a

b

ba 
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Note that when two vectors a and b are equal, they have the same direction and 
magnitude, regardless of the position of their initial points.  Thus a b in Fig. 1.1.3.  A 
particular position in space is not assigned here to a vector – it just has a magnitude and a 
direction.  Such vectors are called free, to distinguish them from certain special vectors to 
which a particular position in space is actually assigned. 
 

 
 

Figure 1.1.3: equal vectors 
 
The vector as something with “magnitude and direction” and defined by the above rules is 
an element of one case of the mathematical structure, the vector space.  The vector space 
is discussed in the next section, §1.2. 
 
 
1.1.4 The Dot Product 
 
The dot product of two vectors a and b (also called the scalar product) is denoted by 

ba  .  It is a scalar defined by 
 

cosbaba  .             (1.1.1) 

 
  here is the angle between the vectors when their initial points coincide and is restricted 
to the range  0 , Fig. 1.1.4. 
 

 
 

Figure 1.1.4: the dot product 
 
An important property of the dot product is that if for two (proper) vectors a and b, the 
relation 0ba , then a and b are perpendicular.  The two vectors are said to be 

orthogonal.  Also, )0cos(aaaa  , so that the length of a vector is aaa  . 

 
Another important property is that the projection of a vector u along the direction of a 
unit vector e is given by eu  .  This can be interpreted geometrically as in Fig. 1.1.5. 
 
 

a

b

a

b
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Figure 1.1.5: the projection of a vector along the direction of a unit vector 
 
It follows that any vector u can be decomposed into a component parallel to a (unit) 
vector e and another component perpendicular to e, according to 
 

    eeuueeuu                                               (1.1.2) 
 
The dot product possesses the following properties (which can be proved using the above 
definition) {▲Problem 6}: 

(1) abba    (commutative)       
(2)   cabacba   (distributive) 

(3)    baba    
(4) 0aa ; and 0aa  if and only if oa   

 
 
1.1.5 The Cross Product 
 
The cross product of two vectors a and b (also called the vector product) is denoted by 

ba .  It is a vector with magnitude 
 

sinbaba                             (1.1.3) 

 
with   defined as for the dot product.  It can be seen from the figure that the magnitude 
of ba  is equivalent to the area of the parallelogram determined by the two vectors a 
and b. 
 

 
 

Figure 1.1.6: the magnitude of the cross product 
 
The direction of this new vector is perpendicular to both a and b.  Whether ba  points 
“up” or “down” is determined from the fact that the three vectors a, b and ba  form a 
right handed system.  This means that if the thumb of the right hand is pointed in the 

a

b



ba

u

e

u



cosueu 
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direction of ba , and the open hand is directed in the direction of a, then the curling of 
the fingers of the right hand so that it closes should move the fingers through the angle  , 

 0 , bringing them to b.  Some examples are shown in Fig. 1.1.7. 
 

 
 

Figure 1.1.7: examples of the cross product 
 
The cross product possesses the following properties (which can be proved using the 
above definition): 

(1) abba    (not commutative) 
(2)   cabacba   (distributive) 

(3)    baba    

(4) oba   if and only if a and b  o  are parallel (“linearly dependent”) 
 
 
The Triple Scalar Product 
 
The triple scalar product, or box product, of three vectors wvu ,,  is defined by 
 

      vuwuwvwvu   Triple Scalar Product         (1.1.4) 
 
Its importance lies in the fact that, if the three vectors form a right-handed triad, then the 
volume V of a parallelepiped spanned by the three vectors is equal to the box product. 
 
To see this, let e be a unit vector in the direction of vu , Fig. 1.1.8.  Then the projection 
of w on vu  is ew h , and 
 

   

V

h







vu

evuwvuw

      (1.1.5) 
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Figure 1.1.8: the triple scalar product 
 
Note: if the three vectors do not form a right handed triad, then the triple scalar product 
yields the negative of the volume.  For example, using the vectors above, 
  V   w v u . 

 
 
1.1.6 Vectors and Points 
 
Vectors are objects which have magnitude and direction, but they do not have any 
specific location in space.  On the other hand, a point has a certain position in space, and 
the only characteristic that distinguishes one point from another is its position.  Points 
cannot be “added” together like vectors.  On the other hand, a vector v can be added to a 
point p to give a new point q, pvq  , Fig. 1.1.9.  Similarly, the “difference” between 
two points gives a vector, vpq  .  Note that the notion of point as defined here is 
slightly different to the familiar point in space with axes and origin – the  concept of 
origin is not necessary for these points and their simple operations with vectors. 
 

 
 

Figure 1.1.9: adding vectors to points 
 
 
1.1.7 Problems 
 
1. Which of the following are scalars and which are vectors? 

(i) weight 
(ii) specific heat 
(iii) momentum 
(iv) energy 
(v) volume 

2. Find the magnitude of the sum of three unit vectors drawn from a common vertex of 
a cube along three of its sides. 

w

u
v e h





p

q

v
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3. Consider two non-collinear (not parallel) vectors a and b.  Show that a vector r 
lying in the same plane as these vectors can be written in the form bar qp  , 
where p and q are scalars. [Note: one says that all the vectors r in the plane are 
specified by the base vectors a and b.] 

4. Show that the dot product of two vectors u and v can be interpreted as the 
magnitude of u times the component of v in the direction of u. 

5. The work done by a force, represented by a vector F, in moving an object a given 
distance is the product of the component of force in the given direction times the 
distance moved.  If the vector s represents the direction and magnitude (distance) 
the object is moved, show that the work done is equivalent to sF  . 

6. Prove that the dot product is commutative, abba  .  [Note: this is equivalent to 
saying, for example, that the work done in problem 5 is also equal to the component 
of s in the direction of the force, times the magnitude of the force.] 

7. Sketch ab  if a and b are as shown below. 

 

8. Show that 
2222

bababa  . 

9. Suppose that a rigid body rotates about an axis O with angular speed  , as shown 
below.  Consider a point p in the body with position vector r.  Show that the 
velocity v of p is given by rωv  , where ω  is the vector with magnitude   and 
whose direction is that in which a right-handed screw would advance under the 
rotation.  [Note: let s be the arc-length traced out by the particle as it rotates through 
an angle   on a circle of radius r , then rv  v  (since 

)/(/, dtdrdtdsrs   ).] 

 
10. Show, geometrically, that the dot and cross in the triple scalar product can be 

interchanged:    cbacba  . 

11. Show that the triple vector product   cba   lies in the plane spanned by the 
vectors a and b. 

 

ω

v

r
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1.2 Vector Spaces 
 
The notion of the vector presented in the previous section is here re-cast in a more formal 
and abstract way, using some basic concepts of Linear Algebra and Topology.  This 
might seem at first to be unnecessarily complicating matters, but this approach turns out 
to be helpful in unifying and bringing clarity to much of the theory which follows. 
 
Some background theory which complements this material is given in Appendix A to this 
Chapter, §1.A. 
 
 
1.2.1 The Vector Space 
 
The vectors introduced in the previous section obey certain rules, those listed in §1.1.3.  It 
turns out that many other mathematical objects obey the same list of rules.  For that 
reason, the mathematical structure defined by these rules is given a special name, the 
linear space or vector space. 
 
First, a set is any well-defined list, collection, or class of objects, which could be finite or 
infinite.  An example of a set might be 
 

 3|  xxB                                                            (1.2.1) 
 
which reads “B is the set of objects x such that x satisfies the property 3x ”.  Members 
of a set are referred to as elements. 
 
Consider now the field1 of real numbers R.  The elements of R are referred to as scalars.  
Let V be a non-empty set of elements ,,, cba  with rules of addition and scalar 
multiplication, that is there is a sum V ba  for any Vba,  and a product Va  
for any Va , R .  Then V is called a (real)2 vector space over R if the following 
eight axioms hold: 
1. associative law for addition: for any Vcba ,, , one has )()( cbacba   
2. zero element: there exists an element Vo , called the zero element, such that 

aaooa   for every Va  
3. negative (or inverse): for each Va  there exists an element V a , called the 

negative of a, such that ( ) ( )     a a a a o  
4. commutative law for addition: for any Vba, , one has abba   
5. distributive law, over addition of elements of V: for any Vba,  and scalar R , 

baba   )(    
6. distributive law, over addition of scalars: for any Va  and scalars R , , 

aaa   )(  

                                                 
1 A field is another mathematical structure (see Appendix A to this Chapter, §1.A).  For example, the set of 
complex numbers is a field.  In what follows, the only field which will be used is the familiar set of real 
numbers with the usual operations of addition and multiplication.  
2 “real”, since the associated field is the reals.  The word real will usually be omitted in what follows for 
brevity. 
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7. associative law for multiplication: for any Va  and scalars R , , 
aa )()(    

8. unit multiplication: for the unit scalar R1 , aa 1  for any Va . 
 
The set of vectors as objects with “magnitude and direction” discussed in the previous 
section satisfy these rules and therefore form a vector space over R.  However, despite the 
name “vector” space, other objects, which are not the familiar geometric vectors, can also 
form a vector space over R, as will be seen in a later section. 
 
 
1.2.2 Inner Product Space 
 
Just as the vector of the previous section is an element of a vector space, next is 
introduced the notion that the vector dot product is one example of the more general 
inner product. 
 
First, a function (or mapping) is an assignment which assigns to each element of a set A 
a unique element of a set B, and is denoted by 
 

BAf :                                                           (1.2.2) 
 
An ordered pair  ba,  consists of two elements a and b in which one of them is 
designated the first element and the other is designated the second element   The product 
set (or Cartesian product) BA  consists of all ordered pairs  ba,  where Aa  and 

Bb : 
 

  BbAabaBA  ,|,                                          (1.2.3) 
 
Now let V be a real vector space.  An inner product (or scalar product) on V is a 
mapping that associates to each ordered pair of elements x, y, a scalar, denoted by yx, , 

 
RVV  :,                                                 (1.2.4) 

 
that satisfies the following properties, for Vzyx ,, , R : 
 
1. additivity: zyzxzyx ,,,   

2. homogeneity: yxyx ,,    

3. symmetry: xyyx ,,   

4. positive definiteness: 0, xx  when ox   

 
From these properties, it follows that, if 0, yx  for all Vy , then 0x  

 
A vector space with an associated inner product is called an inner product space.  
 
Two elements of an inner product space are said to be orthogonal if 
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0, yx                                                         (1.2.5) 

 
and a set of elements of V,  ,,, zyx , are said to form an orthogonal set if every 
element in the set is orthogonal to every other element: 
 

,0,,0,,0,  zyzxyx etc.                          (1.2.6) 

 
The above properties are those listed in §1.1.4, and so the set of vectors with the 
associated dot product forms an inner product space.   
 
Euclidean Vector Space 
 
The set of real triplets  321 ,, xxx  under the usual rules of addition and multiplication 

forms a vector space 3R .  With the inner product defined by 
 

332211, yxyxyx yx  

 
one has the inner product space known as (three dimensional) Euclidean vector space, 
and denoted by E.  This inner product allows one to take distances (and angles) between 
elements of E through the norm (length) and metric (distance) concepts discussed next. 
 
 
1.2.3 Normed Space 
 
Let V be a real vector space.  A norm on V is a real-valued function, 
 

RV :                                                           (1.2.7) 

 
that satisfies the following properties, for Vyx, , R : 
 
1. positivity: 0x  

2. triangle inequality: yxyx   

3. homogeneity: xx    

4. positive definiteness: 0x  if and only if ox   

 
A vector space with an associated norm is called a normed vector space.  Many different 
norms can be defined on a given vector space, each one giving a different normed linear 
space.  A natural norm for the inner product space is 
 

xxx ,                                                      (1.2.8) 

 
It can be seen that this norm indeed satisfies the defining properties.  When the inner  
product is the vector dot product, the norm defined by 1.2.8 is the familiar vector 
“length”. 
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One important consequence of the definitions of inner product and norm is the Schwarz 
inequality, which states that 
 

yxyx ,                                                      (1.2.9) 

 
One can now define the angle between two elements of V to be 
 

  









 

yx

yx
yx

,
cos,,: 1 RVV                            (1.2.10) 

 
The quantity inside the curved brackets here is necessarily between 1  and 1 , by the 
Schwarz inequality, and hence the angle   is indeed a real number. 
 
 
1.2.4 Metric Spaces 
 
Metric spaces are built on the concept of “distance” between objects.  This is a 
generalization of the familiar distance between two points on the real line.  
 
Consider a set X.  A metric is a real valued function,   
 

  RXXd  :,                                                 (1.2.11) 
 

that satisfies the following properties, for Xyx, : 
 
1. positive: 0),( yxd  and 0),( xxd , for all Xyx,  
2. strictly positive: if 0),( yxd  then yx  , for all Xyx,  
3. symmetry: ),(),( xyyx dd  , for all Xyx,  
4. triangle inequality: ),(),(),( yzzxyx ddd  , for all Xzyx ,,  
 
A set X with an associated metric is called a metric space.  The set X can have more than 
one metric defined on it, with different metrics producing different metric spaces. 
 
Consider now a normed vector space.  This space naturally has a metric defined on it: 
 

  yxyx ,d                                                    (1.2.12) 

 
and thus the normed vector space is a metric space.  For the set of vectors with the dot 
product, this gives the “distance” between two vectors yx, . 
 
 
 
 
 



Section 1.2 

Solid Mechanics Part III                                                                                Kelly 14

1.2.5 The Affine Space 
 
Consider a set P, the elements of which are called points.  Consider also an associated 
vector space V.  P is an affine space when: 
 
(i)  given two points ,p q P , one can define a difference, q p  which is a unique 

element v of V, i.e.  ,q p q p V   v v  (called a translation vector), 

(ii) given a point p P  and Vv , one can define the sum pv  which is a unique 
point q of P, i.e. q p P  v  , 

 
and for which the following property holds: for , ,p q r P  : 

      q r r p q p      

 
From the above, one has for the affine space that p p  o  and  q p p q    , for all 

,p q P . 
 
One can take the sum of vectors, according to the structure of the vector space, but one 
cannot take the sum of points, only the difference between two points. 
 
A key point is that there is no notion of origin in the affine space.  There is no special or 
significant point in the set P, unlike with the vector space, where there is a special zero 
element, o, which has its own axiom (see axiom 2 in §1.2.1 above). 
 
Suppose now that the associated vector space is a Euclidean vector space, i.e. an inner 
product space.  Define the distance between two points through the inner product 
associated with V, 
 

 , ,d p q q p q p q p                                       (1.2.13) 

 
It can be shown that this mapping RPPd :  is a metric, i.e. it satisfies the metric 
properties, and thus P is a metric space (although it is not a vector space).  In this case, P 
is referred to as Euclidean point space, Euclidean affine space or, simply, Euclidean 
space. 
 
Whereas in Euclidean vector space there is a zero element, in Euclidean point space there 
is none – apart from that, the two spaces are the same and, apart from certain special 
cases, one does not need to distinguish between them. 
 
Note: one can generalise the simple affine space into a vector space by choosing some 
fixed o P  to be an origin.  In that case,  ,p o p o  v v  is called the position vector 

of p relative to o. Then one can define the sum of two points through  p q o   v w , 

where ,p o q o   v w .3 
 
 

                                                 
3 One also has to define a scaling, e.g. 0p   v , where   is in the associated field (of real numbers). 
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1.3 Cartesian Vectors 
 
So far the discussion has been in symbolic notation1, that is, no reference to ‘axes’ or 
‘components’ or ‘coordinates’ is made, implied or required.  The vectors exist 
independently of any coordinate system.  It turns out that much of vector (tensor) 
mathematics is more concise and easier to manipulate in such notation than in terms of 
corresponding component notations.  However, there are many circumstances in which 
use of the component forms of vectors (and tensors) is more helpful – or essential.  In this 
section, vectors are discussed in terms of components – component form. 
 
 
1.3.1 The Cartesian Basis 
 
Consider three dimensional (Euclidean) space.  In this space, consider the three unit 
vectors 321 ,, eee  having the properties 

 
0133221  eeeeee ,    (1.3.1) 

 
so that they are mutually perpendicular (mutually orthogonal), and 
 

1332211  eeeeee ,    (1.3.2) 

 
so that they are unit vectors.  Such a set of orthogonal unit vectors is called an 
orthonormal set, Fig. 1.3.1.  Note further that this orthonormal system  321 ,, eee  is 

right-handed, by which is meant 321 eee   (or 132 eee   or 213 eee  ). 

 
This set of vectors  321 ,, eee  forms a basis, by which is meant that any other vector can 

be written as a linear combination of these vectors, i.e. in the form 
 

332211 eeea aaa                                           (1.3.3) 

          

 
 

Figure 1.3.1: an orthonormal set of base vectors and Cartesian components 
 

                                                 
1 or absolute or invariant or direct or vector notation 

1e
2e

3e

33 ea a
a

22 ea a

11 ea a
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By repeated application of Eqn. 1.1.2 to a vector a, and using 1.3.2, the scalars in 1.3.3 
can be expressed as (see Fig. 1.3.1) 
 

1 1 2 2 3 3, ,a a a     a e a e a e                                   (1.3.4)  

 
The scalars 21, aa  and 3a  are called the Cartesian components of a in the given basis 

 321 ,, eee .  The unit vectors are called base vectors when used for this purpose. 

 
Note that it is not necessary to have three mutually orthogonal vectors, or vectors of unit 
size, or a right-handed system, to form a basis – only that the three vectors are not co-
planar.  The right-handed orthonormal set is often the easiest basis to use in practice, but 
this is not always the case – for example, when one wants to describe a body with curved 
boundaries (e.g., see §1.6.10). 
 
The dot product of two vectors u and v, referred to the above basis, can be written as 
 

   
     

     
     

332211

333323231313

323222221212

313121211111

332211332211

vuvuvu

vuvuvu

vuvuvu

vuvuvu

vvvuuu









eeeeee

eeeeee

eeeeee

eeeeeevu

  (1.3.5) 

 
Similarly, the cross product is 

 
   

     
     
     

      312212133112332

333323231313

323222221212

313121211111

332211332211

eee

eeeeee

eeeeee

eeeeee

eeeeeevu

vuvuvuvuvuvu

vuvuvu

vuvuvu

vuvuvu

vvvuuu









  (1.3.6) 

 
This is often written in the form 
 

321

321

321

vvv

uuu

eee

vu  ,     (1.3.7) 

 
that is, the cross product is equal to the determinant of the 33  matrix 
 

















321

321

321

vvv

uuu

eee
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1.3.2 The Index Notation 
 
The expression for the cross product in terms of components, Eqn. 1.3.6, is quite lengthy 
– for more complicated quantities things get unmanageably long.  Thus a short-hand 
notation is used for these component equations, and this index notation2 is described 
here. 
 
In the index notation, the expression for the vector a in terms of the components 

321 ,, aaa  and the corresponding basis vectors 321 ,, eee  is written as 

 





3

1
332211

i
iiaaaa eeeea        (1.3.8) 

 
This can be simplified further by using Einstein’s summation convention, whereby the 
summation sign is dropped and it is understood that for a repeated index (i in this case) a 
summation over the range of the index (3 in this case3) is implied.  Thus one writes 

iia ea  .  This can be further shortened to, simply, ia . 

 
The dot product of two vectors written in the index notation reads  
 

iivu vu  Dot Product        (1.3.9) 

 
The repeated index i is called a dummy index, because it can be replaced with any other 
letter and the sum is the same; for example, this could equally well be written as 

jj vu vu  or kk vu . 

 
For the purpose of writing the vector cross product in index notation, the permutation 
symbol (or alternating symbol) ijk  can be introduced: 

 












equal are indices moreor   twoif0

)3,2,1( ofn permutatio oddan  is ),,( if1

)3,2,1( ofn permutatioeven an  is ),,( if1

kji

kji

ijk      (1.3.10) 

 
For example (see Fig. 1.3.2), 
 

    

0

1

1

122

132

123









 

 

                                                 
2 or indicial or subscript or suffix notation 
3 2 in the case of a two-dimensional space/analysis 
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Figure 1.3.2: schematic for the permutation symbol (clockwise gives +1) 
 
Note that 
 

ikjkjijikkijjkiijk                   (1.3.11) 

 
and that, in terms of the base vectors {▲Problem 7},  
 

                               kijkji eee              (1.3.12) 

 
and {▲Problem 7} 
 

  kjiijk eee  .                   (1.3.13) 

 
The cross product can now be written concisely as {▲Problem 8} 
 

kjiijk vu evu   Cross Product     (1.3.14) 

 
Introduce next the Kronecker delta symbol ij , defined by 

 









ji

ji
ij ,1

,0
      (1.3.15) 

 
Note that 111   but, using the index notation, 3ii .  The Kronecker delta  allows one 

to write the expressions defining the orthonormal basis vectors (1.3.1, 1.3.2) in the 
compact form 
 

ijji ee      Orthonormal Basis Rule          (1.3.16) 

 
The triple scalar product (1.1.4) can now be written as 
 

   

321

321

321

www

vvv

uuu

wvu

wvu

wvu

kjiijk

kmmjiijk

mmkjiijk













 eewvu

          (1.3.17) 

1

23
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Note that, since the determinant of a matrix is equal to the determinant of the transpose of 
a matrix, this is equivalent to 
 

 
333

222

111

wvu

wvu

wvu

 wvu        (1.3.18) 

 
Here follow some useful formulae involving the permutation and Kronecker delta symbol 
{▲Problem 13}: 
 

pkijpijk

jpiqjqipkpqijk





2


                   (1.3.19) 

 
Finally, here are some other important identities involving vectors; the third of these is 
called Lagrange’s identity4 {▲Problem 15}: 
 

     
     

   

         
           cdbabcdaacbddcba

dcbacdbadcba

dbda

cbca
dcba

cbabcacba

babababa











 222

    (1.3.20) 

 
 
1.3.3 Matrix Notation for Vectors 
 
The symbolic notation v  and index notation iiv e  (or simply iv ) can be used to denote a 

vector.  Another notation is the matrix notation: the vector v can be represented by a 
13  matrix (a column vector): 

 

















3

2

1

v

v

v

 
 
Matrices will be denoted by square brackets, so a shorthand notation for this 
matrix/vector would be  v .  The elements of the matrix  v  can be written in the element 

form iv .  The element form for a matrix is essentially the same as the index notation for 

the vector it represents. 
 

                                                 
4 to be precise, the special case of 1.3.20c, 1.3.20a, is Lagrange’s identity 
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Formally, a vector can be represented by the ordered triplet of real numbers,  321 ,, vvv .  

The set of all vectors can be represented by 3R , the set of all ordered triplets of real 
numbers: 
 

  RvvvvvvR  321321
3 ,,|,,                                 (1.3.21) 

 
It is important to note the distinction between a vector and a matrix: the former is a 
mathematical object independent of any basis, the latter is a representation of the vector 
with respect to a particular basis – use a different set of basis vectors and the elements of 
the matrix will change, but the matrix is still describing the same vector.  Said another 
way, there is a difference between an element (vector) v of Euclidean vector space and an 
ordered triplet 3Rvi  .  This notion will be discussed more fully in the next section. 

 
As an example, the dot product can be written in the matrix notation as 

 
 
Here, the notation  Tu  denotes the 31  matrix (the row vector).  The result is a 11  

matrix, i.e. a scalar, in element form iivu . 

 
 
1.3.4 Cartesian Coordinates 
 
Thus far, the notion of an origin has not been used.  Choose a point o in Euclidean (point) 
space, to be called the origin.  An origin together with a right-handed orthonormal basis 
 ie  constitutes a (rectangular) Cartesian coordinate system, Fig. 1.3.3. 

          

 
 

Figure 1.3.3: a Cartesian coordinate system 
 

o

v (point) 

ovv  (vector) 

1e
2e

3e

(point) 

“short” 
matrix notation 

“full” 
matrix notation

    

















3

2

1

321
T

v

v

v

uuuvu
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A second point v then defines a position vector ov  , Fig. 1.3.3.  The components of the 
vector ov   are called the (rectangular) Cartesian coordinates of the point v 5.  For 
brevity, the vector ov   is simply labelled v, that is, one uses the same symbol for both 
the position vector and associated point. 
 
 
1.3.5 Problems 
 
1. Evaluate vu   where 321 23 eeeu  , 321 424 eeev  . 

2. Prove that for any vector u, 332211 )()()( eeueeueeuu  .  [Hint: write u in 

component form.] 
3. Find the projection of the vector 321 2 eeeu   on the vector 

321 744 eeev  . 

4. Find the angle between 321 623 eeeu   and 321 34 eeev  . 

5. Write down an expression for a unit vector parallel to the resultant of two vectors u 
and v (in symbolic notation).  Find this vector when 321 542 eeeu  , 

321 32 eeev   (in component form).  Check that your final vector is indeed a 

unit vector. 
6. Evaluate vu , where 321 22 eeeu  , 321 22 eeev  . 

7. Verify that mijmji eee  .  Hence, by dotting each side with ke , show that 

  kjiijk eee  . 

8. Show that kjiijk vu evu  . 

9. The triple scalar product is given by   kjiijk wvu wvu .  Expand this equation 

and simplify, so as to express the triple scalar product in full (non-index) component 
form. 

10. Write the following in index notation: v , 1ev  , kev  . 

11. Show that jiij ba  is equivalent to ba  . 

12. Verify that 6ijkijk . 

13. Verify that jpiqjqipkpqijk    and hence show that pkijpijk  2 . 

14. Evaluate or simplify the following expressions: 
(a) kk     (b) ijij     (c) jkij     (d) kjjk v31   

15. Prove Lagrange’s identity 1.3.20c. 
16. If e is a unit vector and a an arbitrary vector, show that 

   eaeeeaa   
which is another representation of Eqn. 1.1.2, where a can be resolved into 
components parallel and perpendicular to e.  

                                                 
5 That is, “components” are used for vectors and “coordinates” are used for points 
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1.4 Matrices and Element Form 
 
 
1.4.1 Matrix – Matrix Multiplication 
 
In the next section, §1.5, regarding vector transformation equations, it will be necessary 
to multiply various matrices with each other (of sizes 13 , 31  and 33 ).  It will be 
helpful to write these matrix multiplications in a short-hand element form and to develop 
some short “rules” which will be beneficial right through this chapter. 
 
First, it has been seen that the dot product of two vectors can be represented by   vuT , or 

iivu .  Similarly, the matrix multiplication   Tvu  gives a 33  matrix with element form 

jivu  or, in full, 

 

















332313

322212

312111

vuvuvu

vuvuvu

vuvuvu

 

 
This type of matrix represents the tensor product of two vectors, written in symbolic 
notation as vu  (or simply uv).  Tensor products will be discussed in detail in §1.8 and 
§1.9. 
 
Next, the matrix multiplication 
 

  

































3

2

1

333231

232221

131211

u

u

u

QQQ

QQQ

QQQ

uQ                                            (1.4.1) 

 
is a 13  matrix with elements     jiji uQuQ  {▲Problem 1}.  The elements of   uQ  

are the same as those of   TT Qu , which in element form reads     ijji QuTT Qu . 

 
The expression   Qu  is meaningless, but   QuT  {▲Problem 2} is a 31  matrix with 

elements     jiji QuQuT . 

 
This leads to the following rule: 
 
 

1. if a vector pre-multiplies a matrix  Q    it is the transpose  Tu  

2. if a matrix  Q  pre-multiplies the vector   it is  u  

3. if summed indices are “beside each other”, as the j in jijQu  or jijuQ  

   the matrix is  Q  

4. if summed indices are not beside each other, as the j in ijjQu  

  the matrix is the transpose,  TQ  
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Finally, consider the multiplication of 33  matrices.  Again, this follows the “beside 
each other” rule for the summed index.  For example,   BA  gives the 33  matrix 

{▲Problem 6}     kjikij BABA , and the multiplication   BAT  is written as 

    kjkiij BABAT .  There is also the important identity 

 

      TTT ABBA         (1.4.2) 
 
Note also the following (which applies to both the index notation and element form): 

(i) if there is no free index, as in iivu , there is one element (representing a scalar) 

(ii) if there is one free index, as in jijQu , it is a 13  (or 31 ) matrix 

(representing a vector) 
(iii) if there are two free indices, as in kjki BA , it is a 33  matrix (representing, as 

will be seen later, a second-order tensor) 
 
 
1.4.2 The Trace of a Matrix 
 
Another important notation involving matrices is the trace of a matrix, defined to be the 
sum of the diagonal terms, and denoted by 
 

  iiAAAA  332211tr A      The Trace    (1.4.3) 

 
 
1.4.3 Problems 
 
1. Show that     jiji uQuQ . To do this, multiply the matrix and the vector in Eqn. 

1.4.1 and write out the resulting vector in full; Show that the three elements of the 
vector are 1 j jQ u , 2 j jQ u  and 3 j jQ u . 

2. Show that   QuT  is a 31  matrix with elements jijQu  (write the matrices out in 

full). 

3. Show that       TTT QuuQ  . 

4. Are the three elements of   uQ  the same as those of   QuT ? 

5. What is the element form for the matrix representation of  cba  ? 

6. Write out the 33  matrices A and B in full, i.e. in terms of ,, 1211 AA etc. and verify 

that   kjikij BAAB  for 1,2  ji . 

7. What is the element form for 
(i)   TBA  

(ii)    vAvT  (there is no ambiguity here, since           vAvvAv TT  ) 

(iii)    BABT  

8. Show that  Atrijij A . 

9. Show that 321321]det[ kjiijkkjiijk AAAAAA  A . 
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1.5 Coordinate Transformation of Vector Components 
 
Very often in practical problems, the components of a vector are known in one coordinate 
system but it is necessary to find them in some other coordinate system.   
 
For example, one might know that the force f acting “in the 1x  direction” has a certain 
value, Fig. 1.5.1 – this is equivalent to knowing the 1x  component of the force, in an 

21 xx −  coordinate system.  One might then want to know what force is “acting” in some 
other direction – for example in the 1x′  direction shown – this is equivalent to asking what 
the 1x′  component of the force is in a new 21 xx ′−′  coordinate system. 
 

 
 

Figure 1.5.1: a vector represented using two different coordinate systems 
 
The relationship between the components in one coordinate system and the components 
in a second coordinate system are called the transformation equations.  These 
transformation equations are derived and discussed in what follows.  
 
 
1.5.1 Rotations and Translations 
 
Any change of Cartesian coordinate system will be due to a translation of the base 
vectors and a rotation of the base vectors.  A translation of the base vectors does not 
change the components of a vector.  Mathematically, this can be expressed by saying that 
the components of a vector a are ae ⋅i , and these three quantities do not change under a 
translation of base vectors. Rotation of the base vectors is thus what one is concerned 
with in what follows. 
 
 
1.5.2 Components of a Vector in Different Systems 
 
Vectors are mathematical objects which exist independently of any coordinate system.  
Introducing a coordinate system for the purpose of analysis, one could choose, for 
example, a certain Cartesian coordinate system with base vectors ie  and origin o, Fig. 

1x  component 
of force 

1x

2x

f
1x′

2x′
1x′  component 

of force 
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1.5.2.  In that case the vector can be written as 332211 eeeu uuu ++= , and 321 ,, uuu  are 
its components. 
 
Now a second coordinate system can be introduced (with the same origin), this time with 
base vectors ie′ .  In that case, the vector can be written as 332211 eeeu ′′+′′+′′= uuu , where 

321 ,, uuu ′′′  are its components in this second coordinate system, as shown in the figure.  
Thus the same vector can be written in more than one way: 
 

1 1 2 2 3 3 1 1 2 2 3 3u u u u u u′ ′ ′ ′ ′ ′= + + = + +u e e e e e e                               (1.5.1) 
 

The first coordinate system is often referred to as “the 321 xxox  system” and the second as 
“the 321 xxxo ′′′  system”. 
 

 
 

Figure 1.5.2: a vector represented using two different coordinate systems 
 
Note that the new coordinate system is obtained from the first one by a rotation of the 
base vectors.  The figure shows a rotation θ  about the 3x  axis (the sign convention for 
rotations is positive counterclockwise). 
 
Two Dimensions 
 
Concentrating for the moment on the two dimensions 21 xx − , from trigonometry (refer to 
Fig. 1.5.3), 
 

[ ] [ ]

1 1 2 2

1 2

1 2 1 1 2 2cos sin sin cos

u u

OB AB BD CP

u u u uθ θ θ θ

= +

=  −  +  +    
′ ′ ′ ′= − + +

u e e

e e

e e

                (1.5.2) 

 
and so 
 

 
 

 

2x′
2x

1x

1x′

1u

2u′

1u′

2u

θ

θ

o

1e′2e′
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In matrix form, these transformation equations can be written as 
 

1 1

2 2

cos sin
sin cos

u u
u u

θ θ
θ θ

′−    
=     ′    

                                   (1.5.3)  

 

 
 

Figure 1.5.3: geometry of the 2D coordinate transformation 
 
The 22×  matrix is called the transformation or rotation matrix [ ]Q .  By pre-
multiplying both sides of these equations by the inverse of [ ]Q , [ ]1−Q , one obtains the 
transformation equations transforming from [ ]T21 uu  to [ ]T21 uu ′′ : 

 
1 1

2 2

cos sin
sin cos

u u
u u

θ θ
θ θ

′    
=    ′ −    

                                  (1.5.4)  

 
An important property of the transformation matrix is that it is orthogonal, by which is 
meant that 
 

[ ] [ ]T1 QQ =−  Orthogonality of Transformation/Rotation Matrix     (1.5.5) 
 
Three Dimensions 
 
The three dimensional case is shown in Fig. 1.5.4a. In this more general case, note that 
 

2x′
2x

1x

1x′

1u

2u′

1u′

2u

θ

θ

θ

A B

P

D

o

C

vector components in 
second coordinate system 

vector components in 
first coordinate system 

212

211

cossin
sincos

uuu
uuu
′+′=

′−′=
θθ
θθ
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( )
( )
( )

1 1 1 1 1 2 2 3 3 1 1 1 2 1 3 1

2 2 2 1 1 2 2 3 3 2 1 2 2 2 3 2

3 3 3 1 1 2 2 3 3 3 1 3 2 3 3 3

u u u u u
u u u u u
u u u u u

′ ′ ′ ′ ′ ′ ′ ′ ′ ′⋅ ⋅ + + ⋅ ⋅ ⋅        
       ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= ⋅ = ⋅ + + = ⋅ ⋅ ⋅       
 ′ ′ ′ ′ ′ ′ ′ ′ ′ ′      ⋅ ⋅ + + ⋅ ⋅ ⋅        

e u e e e e e e e e e e
e u e e e e e e e e e e
e u e e e e e e e e e e





       (1.5.6) 

 
The dot products of the base vectors from the two different coordinate systems can be 
seen to be the cosines of the angles between the coordinate axes. This is illustrated in Fig. 
1.5.4b for the case of 1 j′ ⋅e e . In general: 
 

( )cos ,i j i jx x′ ′⋅ =e e                                               (1.5.7) 
 
The nine quantities ),cos( ji xx ′  are called the direction cosines, and Eqn. 1.5.6 can be 
expressed alternatively as 
 

1 1 1 1 2 1 3 1

2 2 1 2 2 2 3 2

3 3 1 3 2 3 3 3

cos( , ) cos( , ) cos( , )
cos( , ) cos( , ) cos( , )
cos( , ) cos( , ) cos( , )

u x x x x x x u
u x x x x x x u
u x x x x x x u

′ ′ ′ ′     
     ′ ′ ′ ′=     

′ ′ ′ ′          

                      (1.5.8) 

 

 
 
Figure 1.5.4: a 3D space: (a) two different coordinate systems, (b) direction cosines 

 
Again denoting the components of this transformation matrix by the letter Q, 

),cos(),,cos( 21121111 xxQxxQ ′=′= , etc., so that 
 

cos( , )ij i j i jQ x x′ ′= = ⋅e e .                       (1.5.9) 
 
One has the general 3D transformation matrix equations 
 

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

u Q Q Q u
u Q Q Q u
u Q Q Q u

′     
     ′=     

′          

                                      (1.5.10)  

 
or, in element form and short-hand matrix notation, 

1x

2x

1x′

2x′

3x
3x′

u

1x

3′e

1′e2′e

1e

( )1 1 1 1cos ,x x′ ′= ⋅e e

( )1 2 1 2cos ,x x′ ′= ⋅e e

( )1 3 1 3cos ,x x′ ′= ⋅e e

(a) (b)
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[ ] [ ][ ]uQu ′=′= jiji uQu           (1.5.11) 

 
Note: some authors define the matrix of direction cosines to consist of the components 

cos( , )Q x xij i j′= , so that the subscript i refers to the new coordinate system and the j to 

the old coordinate system, rather than the other way around as used here. 
 
Formal Derivation of the Transformation Equations 
 
The above derivation of the transformation equations Eqns. 1.5.11, jiji uQu ′= , is here 
carried out again using the index notation in a concise manner: start with the relations 

jjkk uu eeu ′′==  and post-multiply both sides by ie  to get (the corresponding matrix 
representation is to the right (also, see Problem 3 in §1.4.3)): 
 

[ ] [ ][ ]

T T T

k k i j j i

k ki j ij

i j ij

i ij j

u u
u u Q

u u Q

u Q u

δ

′ ′⋅ = ⋅

′→ =

′ ′     → = =     
′ ′→ = =

e e e e

u u Q

u Q u





                        (1.5.12)  

 
The inverse equations are {▲Problem 3} 
 

[ ] [ ][ ]uQu T=′=′ jjii uQu     (1.5.13) 
 
Orthogonality of the Transformation Matrix [ ]Q  
 
As in the two dimensional case, the transformation matrix is orthogonal, [ ] [ ]1T −= QQ .  
This follows from 1.5.11, 1.5.13. 
 
Example 
 
Consider a Cartesian coordinate system with base vectors ie .  A coordinate 
transformation is carried out with the new basis given by 
 

3
)3(

32
)3(

21
)3(

13

3
)2(

32
)2(

21
)2(

12

3
)1(

32
)1(

21
)1(

11

eeee
eeee

eeee

nnn
nnn
nnn

++=′

++=′

++=′

 

 
What is the transformation matrix? 
 
Solution 
 
The transformation matrix consists of the direction cosines jijiij xxQ ee ′⋅=′= ),cos( , so 
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■  

 
 
1.5.3 Problems 
 
1. The angles between the axes in two coordinate systems are given in the table below. 

 1x  2x  3x  

1x′  o135  o60  o120  
2x′  o90  o45  o45  
3x′  o45  o60  o120  

Construct the corresponding transformation matrix [ ]Q  and verify that it is 
orthogonal. 

2. The 321 xxxo ′′′  coordinate system is obtained from the 321 xxox  coordinate system by a 
positive (counterclockwise) rotation of θ  about the 3x  axis.  Find the (full three 
dimensional) transformation matrix [ ]Q .  A further positive rotation β  about the 

2x  axis is then made to give the 321 xxxo ′′′′′′  coordinate system.  Find the 
corresponding transformation matrix [ ]P .  Then construct the transformation matrix 
[ ]R  for the complete transformation from the 321 xxox  to the 321 xxxo ′′′′′′  coordinate 
system. 

3. Beginning with the expression ikkijj uu eeee ′⋅′′=′⋅ , formally derive the relation 

jjii uQu =′  ( [ ] [ ][ ]uQu T=′ ). 
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1.6 Vector Calculus 1 - Differentiation 
 
Calculus involving vectors is discussed in this section, rather intuitively at first and more 
formally toward the end of this section.  
 
 
1.6.1 The Ordinary Calculus 
 
Consider a scalar-valued function of a scalar, for example the time-dependent density 
of a material )(t  .  The calculus of scalar valued functions of scalars is just the 
ordinary calculus.  Some of the important concepts of the ordinary calculus are reviewed 
in Appendix B to this Chapter, §1.B.2. 
 
 
1.6.2 Vector-valued Functions of a scalar 
 
Consider a vector-valued function of a scalar, for example the time-dependent 
displacement of a particle )(tuu  .  In this case, the derivative is defined in the usual 
way, 
 

t

ttt

dt

d
t 


 

)()(
lim 0

uuu
, 

 
which turns out to be simply the derivative of the coefficients1, 
 

i
i

dt

du

dt

du

dt

du

dt

du

dt

d
eeee

u
 3

3
2

2
1

1  

 
Partial derivatives can also be defined in the usual way.  For example, if u is a function of 
the coordinates, ),,( 321 xxxu , then 

 

1

3213211
0

1

),,(),,(
lim

1 x

xxxxxxx

x x 








uuu
 

 
Differentials of vectors are also defined in the usual way, so that when 321 ,, uuu  undergo 

increments 332211 ,, uduuduudu  , the differential of u is 

 

332211 eeeu dududud   

 
and the differential and actual increment u  approach one another as 

0,, 321  uuu . 

 
 
 

                                                 
1 assuming that the base vectors do not depend on t 
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Space Curves 
 
The derivative of a vector can be interpreted geometrically as shown in Fig. 1.6.1: u  is 
the increment in u consequent upon an increment t  in t.  As t changes, the end-point of 
the vector )(tu  traces out the dotted curve   shown – it is clear that as 0t , u  
approaches the tangent to  , so that dtd /u  is tangential to  .  The unit vector tangent to 
the curve is denoted by τ : 
 

dtd

dtd

/

/

u

u
τ         (1.6.1) 

 

 
 

Figure 1.6.1: a space curve; (a) the tangent vector, (b) increment in arc length 
 
Let s be a measure of the length of the curve  , measured from some fixed point on  .  
Let s  be the increment in arc-length corresponding to increments in the coordinates, 

 T321 ,, uuu u , Fig. 1.6.1b.  Then, from the ordinary calculus (see  Appendix 

1.B),  
 

       2
3

2
2

2
1

2 dudududs   

 
so that 
 

2

3

2

2

2

1 





















dt

du

dt

du
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so that 
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u
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Thus the unit vector tangent to the curve can be written as 
 

ds

d

dtds

dtd uu
τ 

/

/
     (1.6.3) 

 
If u is interpreted as the position vector of a particle and t is interpreted as time, then 

dtd /uv   is the velocity vector of the particle as it moves with speed dtds /  along  . 
 
Example (of particle motion) 
 
A particle moves along a curve whose parametric equations are 2

1 2tx  , ttx 42
2  , 

533  tx  where t is time.  Find the component of the velocity at time 1t  in the 

direction 321 23 eeea  . 

 
Solution 
 
The velocity is 
 

    
1at324

5342

321

32
2

1
2





t

tttt
dt

d

dt

d

eee

eee
r

v
 

 
The component in the given direction is av ˆ , where â  is a unit vector in the direction of 

a, giving 7/148 . 
■  

 
Curvature 
 
The scalar curvature )(s  of a space curve is defined to be the magnitude of the rate of 
change of the unit tangent vector: 
 

2

2

)(
ds

d

ds

d
s

uτ
                                                (1.6.4) 

 
Note that τ  is in a direction perpendicular to τ , Fig. 1.6.2.  In fact, this can be proved 
as follows: since τ  is a unit vector, ττ   is a constant ( 1 ), and so   0/  dsd ττ , but 
also,  
 

 
ds

d

ds

d τ
τττ  2  

 
and so τ  and dsd /τ  are perpendicular.  The unit vector defined in this way is called the 
principal normal vector: 
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ds

dτ
ν


1

                                                          (1.6.5) 

 
 

 
 

Figure 1.6.2: the curvature 
 
This can be seen geometrically in Fig. 1.6.2: from Eqn. 1.6.5, τ  is a vector of 
magnitude s  in the direction of the vector normal to τ .  The radius of curvature R is 
defined as the reciprocal of the curvature; it is the radius of the circle which just touches 
the curve at s, Fig. 1.6.2. 
 
Finally, the unit vector perpendicular to both the tangent vector and the principal normal 
vector is called the unit binormal vector: 
 

ντb                                                      (1.6.6) 
 
The planes defined by these vectors are shown in Fig. 1.6.3; they are called the rectifying 
plane, the normal plane and the osculating plane. 
 

 
 
Figure 1.6.3: the unit tangent, principal normal and binormal vectors and associated 

planes 
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Rules of Differentiation 
 
The derivative of a vector is also a vector and the usual rules of differentiation apply, 
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    (1.6.7) 

 
Also, it is straight forward to show that {▲Problem 2} 
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        (1.6.8) 

 
(The order of the terms in the cross-product expression is important here.) 
 
 
1.6.3 Fields 
 
In many applications of vector calculus, a scalar or vector can be associated with each 
point in space x.  In this case they are called scalar or vector fields.  For example 
 

)(x  temperature a scalar field (a scalar-valued function of position) 
)(xv  velocity a vector field (a vector valued function of position) 

 
These quantities will in general depend also on time, so that one writes ),( tx  or ),( txv .  
Partial differentiation of scalar and vector fields with respect to the variable t is 
symbolised by t / .  On the other hand, partial differentiation with respect to the 
coordinates is symbolised by ix / .  The notation can be made more compact by 

introducing the subscript comma to denote partial differentiation with respect to the 
coordinate variables, in which case ii x /,  , kjijki xxuu  /2

, , and so on. 

 
 
1.6.4 The Gradient of a Scalar Field 
 
Let )(x  be a scalar field.  The gradient of   is a vector field defined by (see Fig. 1.6.4) 
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     Gradient of a Scalar Field (1.6.9) 

 
The gradient   is of considerable importance because if one takes the dot product of 

  with xd , it gives the increment in  : 
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Figure 1.6.4: the gradient of a vector 
 
If one writes xd  as eex dxd  , where e is a unit vector in the direction of dx, then 

 

 in  direction

d d

dx dn

       
  e

e                 (1.6.11) 

 
This quantity is called the directional derivative of  , in the direction of e, and will be 
discussed further in §1.6.11. 
 
The gradient of a scalar field is also called the scalar gradient, to distinguish it from the 
vector gradient (see later)2, and is also denoted by 
 

 grad      (1.6.12) 

 
Example (of the Gradient of a Scalar Field) 
 
Consider a two-dimensional temperature field 2

2
2
1 xx  .  Then 

 

2211 22 ee xx 
  

For example, at )0,1( , 1 , 12e  and at  )1,1( , 2 , 21 22 ee  , Fig. 1.6.5.  
Note the following: 

(i)   points in the direction normal to the curve const.  
(ii) the direction of maximum rate of change of   is in the direction of   

                                                 
2 in this context, a gradient is a derivative with respect to a position vector, but the term gradient is used 
more generally than this, e.g. see §1.14 

 

x

xd
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(iii) the direction of zero d  is in the direction perpendicular to   
 

 
 

Figure 1.6.5: gradient of a temperature field 
 
The curves   const., 21 xx  are called isotherms (curves of constant temperature).  In 
general, they are called iso-curves (or iso-surfaces in three dimensions).  

■  
 
Many physical laws are given in terms of the gradient of a scalar field.  For example, 
Fourier’s law of heat conduction relates the heat flux q (the rate at which heat flows 
through a surface of unit area3) to the temperature gradient through 
 

 kq      (1.6.13) 
 
where k is the thermal conductivity of the material, so that heat flows along the direction 
normal to the isotherms. 
 
The Normal to a Surface 
 
In the above example, it was seen that   points in the direction normal to the curve  

const.   Here it will be seen generally how and why the gradient can be used to obtain 
a normal vector to a surface. 
 
Consider a surface represented by the scalar function cxxxf ),,( 321 , c a constant4, and 

also a space curve C lying on the surface, defined by the position vector 

332211 )()()( eeer txtxtx  .  The components of r must satisfy the equation of the 

surface, so ctxtxtxf ))(),(),(( 321 .  Differentiation gives 
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3 the flux is the rate of flow of fluid, particles or energy through a given surface; the flux density is the flux 
per unit area but, as here, this is more commonly referred to simply as the flux 
4 a surface can be represented by the equation cxxxf ),,( 321 ; for example, the expression 

42
3

2
2

2
1  xxx  is the equation for a sphere of radius 2 (with centre at the origin).  Alternatively, the 

surface can be written in the form ),( 213 xxgx  , for example 2
2

2
13 4 xxx   

1

2

)0,1(

)1,1(
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which is equivalent to the equation   0/grad  dtdf r  and, as seen in §1.6.2, dtd /r  is a 
vector tangential to the surface. Thus fgrad  is normal to the tangent vector; fgrad  must 
be normal to all the tangents to all the curves through p, so it must be normal to the plane 
tangent to the surface. 
 
Taylor’s Series 
 
Writing   as a function of three variables (omitting time t), so that ),,( 321 xxx  , then 

  can be expanded in a three-dimensional Taylor’s series: 
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Neglecting the higher order terms, this can be written as 
 

x
x

xxx dd 




 )()(  

 
which is equivalent to 1.6.9, 1.6.10. 
 
 
1.6.5 The Nabla Operator 
 
The symbolic vector operator   is called the Nabla operator5.  One can write this in 
component form as 
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i xxxx 
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1       (1.6.14) 

 
One can generalise the idea of the gradient of a scalar field by defining the dot product 
and the cross product of the vector operator   with a vector field   , according to the 
rules 
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i xx
ee ,      (1.6.15) 

 
The following terminology is used: 
 

uu

uu






curl

div

grad 
     (1.6.16) 

                                                 
5 or del or the Gradient operator 
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These latter two are discussed in the following sections. 
 
 
1.6.6 The Divergence of a Vector Field 
 
From the definition (1.6.15), the divergence of a vector field )(xa  is the scalar field 
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   Divergence of a Vector Field    (1.6.17) 

 
Differential Elements & Physical interpretations of the Divergence 
 
Consider a flowing compressible6 material with velocity field ),,( 321 xxxv .  Consider 

now a differential element of this material, with dimensions 321 ,, xxx  , with bottom 

left-hand corner at ),,( 321 xxx , fixed in space and through which the material flows7, Fig. 

1.6.6. 
 
The component of the velocity in the 1x  direction, 1v , will vary over a face of the element 
but, if the element is small, the velocities will vary linearly as shown; only the 
components at the four corners of the face are shown for clarity. 
 
Since [distance = time   velocity], the volume of material flowing through the right-hand 
face in time t  is t  times the “volume” bounded by the four corner velocities (between 
the right-hand face and the plane surface denoted by the dotted lines); it is straightforward 
to show that this volume is equal to the volume shown to the right, Fig. 1.6.6b, with 
constant velocity equal to the average velocity avev , which occurs at the centre of the face.  

Thus the volume of material flowing out is8 tvxx ave 32  and the volume flux, i.e. the 

rate of volume flow, is avevxx 32 .  Now 
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2111 xxxxxxvvave   

 
Using a Taylor’s series expansion, and neglecting higher order terms, 
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6 that is, it can be compressed or expanded 
7 this type of fixed volume in space, used in analysis, is called a control volume 
8 the velocity will change by a small amount during the time interval t .  One could use the average 

velocity in the calculation, i.e.  ),(),( 112
1 ttvtv  xx , but in the limit as 0t , this will reduce to 

),(1 tv x  
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with the partial derivatives evaluated at ),,( 321 xxx , so the volume flux out is 
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Figure 1.6.6: a differential element; (a) flow through a face, (b) volume of material 
flowing through the face 

 
The net volume flux out (rate of volume flow out through the right-hand face minus the 
rate of volume flow in through the left-hand face) is then  11321 / xvxxx   and the net 

volume flux per unit volume is 11 / xv  .  Carrying out a similar calculation for the other 
two coordinate directions leads to 
 

net unit volume flux out of an elemental volume:   vdiv
3
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       (1.6.18) 

 
which is the physical meaning of the divergence of the velocity field. 
 
If 0div v , there is a net flow out and the density of material is decreasing.  On the other 
hand, if 0div v , the inflow equals the outflow and the density remains constant – such a 
material is called incompressible9.  A flow which is divergence free is said to be 
isochoric.  A vector v for which 0div v  is said to be solenoidal. 
 
Notes: 
 The above result holds only in the limit when the element shrinks to zero size – so that 

the extra terms in the Taylor series tend to zero and the velocity field varies in a linear 
fashion over a face 

 consider the velocity at a fixed point in space, ( , )tv x .  The velocity at a later time, 
( , )t t v x , actually gives the velocity of a different material particle.  This is shown in 

Fig. 1.6.7 below: the material particles 3,2,1  are moving through space and whereas 
),( txv  represents the velocity of particle 2, ( , )t t v x  now represents the velocity of 

particle 1, which has moved into position x.  This point is important in the consideration 
of the kinematics of materials, to be discussed in Chapter 2 

                                                 
9 a liquid, such as water, is a material which is incompressible 

),,( 32111 xxxxv ),,( 321 xxx
1x

2x
),,( 332111 xxxxxv 

),,( 3322111 xxxxxxv 

),,( 322111 xxxxxv 

3x

avev

(a) (b) 
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Figure 1.6.7: moving material particles 
 
Another example would be the divergence of the heat flux vector q.  This time suppose 
also that there is some generator of heat inside the element (a source), generating at a rate 
of r per unit volume, r being a scalar field.  Again, assuming the element to be small, one 
takes r to be acting at the mid-point of the element, and one considers ),( 12

1
1 xxr  .  

Assume a steady-state heat flow, so that the (heat) energy within the elemental volume 
remains constant with time – the law of balance of (heat) energy then requires that the net 
flow of heat out must equal the heat generated within, so 
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Dividing through by 321 xxx   and taking the limit as 0,, 321  xxx , one obtains 

 
rqdiv      (1.6.19) 
 

Here, the divergence of the heat flux vector field can be interpreted as the heat generated 
(or absorbed) per unit volume per unit time in a temperature field.  If the divergence is 
zero, there is no heat being generated (or absorbed) and the heat leaving the element is 
equal to the heat entering it. 
 
 
1.6.7 The Laplacian 
 
Combining Fourier’s law of heat conduction (1.6.13),  kq , with the energy 
balance equation (1.6.19), rqdiv , and assuming the conductivity is constant, leads to 

rk   .  Now 
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  (1.6.20) 
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This expression is called the Laplacian of  .  By introducing the Laplacian 
operator  2 , one has 
 

k

r
 2       (1.6.21) 

 
This equation governs the steady state heat flow for constant conductivity.  In general, the 
equation a 2  is called Poisson’s equation.  When there are no heat sources (or 

sinks), one has Laplace’s equation, 02   .  Laplace’s and Poisson’s equation arise in 
many other mathematical models in mechanics, electromagnetism, etc. 
 
 
1.6.8 The Curl of a Vector Field 
 
From the definition 1.6.15 and 1.6.14, the curl of a vector field )(xa  is the vector field 
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    Curl of a Vector Field     (1.6.22) 

 
It can also be expressed in the form 
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    (1.6.23) 

 
Note: the divergence and curl of a vector field are independent of any coordinate system 
(for example, the divergence of a vector and the length and direction of acurl  are 
independent of the coordinate system in use) – these will be re-defined without reference 
to any particular coordinate system when discussing tensors (see §1.14). 
 
Physical interpretation of the Curl 
 
Consider a particle with position vector r and moving with velocity rωv  , that is, 
with an angular velocity   about an axis in the direction of ω .  Then {▲Problem 7} 
 

  ωrωv 2curl                        (1.6.24) 
 
Thus the curl of a vector field is associated with rotational properties.  In fact, if v is the 
velocity of a moving fluid, then a small paddle wheel placed in the fluid would tend to 
rotate in regions where 0curl v , in which case the velocity field v is called a vortex 
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field.  The paddle wheel would remain stationary in regions where 0curl v , in which 
case the velocity field v is called irrotational. 
 
 
1.6.9 Identities 
 
Here are some important identities of vector calculus {▲Problem 8}: 
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1.6.10 Cylindrical and Spherical Coordinates 
 
Cartesian coordinates have been used exclusively up to this point.  In many practical 
problems, it is easier to carry out an analysis in terms of cylindrical or spherical 
coordinates.  Differentiation in these coordinate systems is discussed in what follows10. 
 
Cylindrical Coordinates 
 
Cartesian and cylindrical coordinates are related through (see Fig. 1.6.8) 
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Then the Cartesian partial derivatives become 
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10 this section also serves as an introduction to the more general topic of Curvilinear Coordinates covered 
in §1.16-§1.19 
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Figure 1.6.8: cylindrical coordinates 
 
The base vectors are related through 
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        (1.6.29) 

 
so that from Eqn. 1.6.14, after some algebra, the Nabla operator in cylindrical coordinates 
reads as {▲Problem 9} 
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which allows one to take the gradient of a scalar field in cylindrical coordinates: 
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Cartesian base vectors are independent of position.  However, the cylindrical base 
vectors, although they are always of unit magnitude, change direction with position.  In 
particular, the directions of the base vectors ee ,r  depend on  , and so these base 

vectors have derivatives with respect to  : from Eqn. 1.6.29, 
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with all other derivatives of the base vectors with respect to zr ,,  equal to zero. 
 
The divergence can now be evaluated: 
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Similarly the curl of a vector and the Laplacian of a scalar are {▲Problem 10} 
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Spherical Coordinates 
 
Cartesian and spherical coordinates are related through (see Fig. 1.6.9) 
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and the base vectors are related through 
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Figure 1.6.9: spherical coordinates 
 
In this case the non-zero derivatives of the base vectors are 
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and it can then be shown that {▲Problem 11} 
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1.6.11 The Directional Derivative 
 
Consider a function  x .  The directional derivative of   in the direction of some vector 
w is the change in   in that direction.  Now the difference between its values at position 
x and wx   is, Fig. 1.6.10,  
 

   xwx  d      (1.6.39) 
 

 
 

Figure 1.6.10: the directional derivative 
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An approximation to d  can be obtained by introducing a parameter   and by 

considering the function  wx   ; one has    xwx    0  and 

   wxwx     1 . 

 
If one treats   as a function of  , a Taylor’s series about 0  gives 
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or, writing it as a function of wx  , 
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By setting 1 , the derivative here can be seen to be a linear approximation to the 
increment d , Eqn. 1.6.39.  This is defined as the directional derivative of the function 

)(x  at the point x in the direction of w, and is denoted by 
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    The Directional Derivative        (1.6.40) 

 
The directional derivative is also written as  xwD . 

 
The power of the directional derivative as defined by Eqn. 1.6.40 is its generality, as seen 
in the following example. 
 
Example (the Directional Derivative of the Determinant) 
 
Consider the directional derivative of the determinant of the 22  matrix A, in the 
direction of a second matrix T (the word “direction” is obviously used loosely in this 
context).  One has 
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The Directional Derivative and The Gradient 
 
Consider a scalar-valued function   of a vector z.  Let z be a function of a parameter  , 

       321 ,, zzz .  Then 

 



Section 1.6 

Solid Mechanics Part III                                                                                Kelly 47










d

d

d

dz

zd

d i

i

z

z









  

 
Thus, with wxz  , 
 

   w
x

z

z
zwx 










 













 00

][
d

d

d

d
                   (1.6.41) 

 
which can be compared with Eqn. 1.6.11.  Note that for Eqns. 1.6.11 and 1.6.41 to be 
consistent definitions of the directional derivative, w here should be a unit vector. 
 
 
1.6.12 Formal Treatment of Vector Calculus 
 
The calculus of vectors is now treated more formally in what follows, following on from 
the introductory section in §1.2.  Consider a vector h, an element of the Euclidean vector 
space E, Eh .  In order to be able to speak of limits as elements become “small” or 
“close” to each other in this space, one requires a norm.  Here, take the standard 
Euclidean norm on E, Eqn. 1.2.8, 
 

hhhhh  ,                                              (1.6.42) 

 
Consider next a scalar function REf : .  If there is a constant 0M  such that 

  hh Mf   as oh  , then one writes 

 
   hh Of     as   oh                                            (1.6.43) 

 
This is called the Big Oh (or Landau) notation.  Eqn. 1.6.43 states that  hf  goes to 

zero at least as fast as h .  An expression such as  

 
     hhh Ogf                                                (1.6.44) 

 
then means that    hh gf   is smaller than h  for h  sufficiently close to o. 

 
Similarly, if  
 

 
0

h

hf
   as   oh                                           (1.6.45) 

 
 then one writes    hh of   as oh  .  This implies that  hf  goes to zero faster than 

h . 
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A field is a function which is defined in a Euclidean (point) space 3E .  A scalar field is 
then a function REf 3: .  A scalar field is differentiable at a point 3Ex  if there 

exists a vector   EDf x  such that 
 

       hhxxhx oDfff     for all   Eh                     (1.6.46) 

 
In that case, the vector  xDf  is called the derivative (or gradient) of f at x (and is given 

the symbol  xf ). 
 
Now setting wh   in 1.6.46, where Ew  is a unit vector, dividing through by   and 
taking the limit as 0 , one has the equivalent statement  
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   for all   Ew                     (1.6.47) 

 
which is 1.6.41.  In other words, for the derivative to exist, the scalar field must have a 
directional derivative in all directions at x. 
 
Using the chain rule as in §1.6.11, Eqn. 1.6.47 can be expressed in terms of the Cartesian 
basis  ie , 
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This must be true for all w and so, in a Cartesian basis,  
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which is Eqn. 1.6.9. 
 
 
1.6.13 Problems 
 
1. A particle moves along a curve in space defined by 

      3
32

2
2

1
3 3844 eeer tttttt   

Here, t is time.  Find 
(i) a unit tangent vector at 2t  
(ii) the magnitudes of the tangential and normal components of acceleration at 2t  

2. Use the index notation (1.3.12) to show that   a
va

vav 
dt

d

dt

d

dt

d
.  Verify this 

result for 21
2

3
2

1 ,3 eeaeev tttt  .  [Note: the permutation symbol and the unit 

vectors are independent of t; the components of the vectors are scalar functions of t 
which can be differentiated in the usual way, for example by using the product rule of 
differentiation.] 
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3. The density distribution throughout a material is given by xx  1 . 
(i) what sort of function is this? 
(ii) the density is given in symbolic notation - write it in index notation  
(iii) evaluate the gradient of   
(iv) give a unit vector in the direction in which the density is increasing the most 
(v) give a unit vector in any direction in which the density is not increasing 
(vi) take any unit vector other than the base vectors and the other vectors you used 

above and calculate dxd /  in the direction of this unit vector 
(vii) evaluate and sketch all these quantities for the point (2,1). 
In parts (iii-iv), give your answer in (a) symbolic, (b) index, and (c) full notation. 

4. Consider the scalar field defined by zyxx 232  . 
(i) find the unit normal to the surface of constant   at the origin (0,0,0) 
(ii) what is the maximum value of the directional derivative of   at the origin? 

(iii) evaluate dxd /  at the origin if )( 31 eex  dsd . 

5. If 312211321 eeeu xxxxxx  , determine udiv  and ucurl .  

6. Determine the constant a so that the vector 
      331232121 23 eeev axxxxxx   

is solenoidal. 
7. Show that ωv 2curl   (see also Problem 9 in §1.1). 
8. Verify the identities (1.6.25-26). 
9. Use (1.6.14) to derive the Nabla operator in cylindrical coordinates (1.6.30). 
10. Derive Eqn. (1.6.34), the curl of a vector and the Laplacian of a scalar in the 

cylindrical coordinates. 
11. Derive (1.6.38), the gradient, divergence and Laplacian in spherical coordinates. 
12. Show that the directional derivative )(D uv  of the scalar-valued function of a vector 

uuu )( , in the direction v, is vu 2 . 
13. Show that the directional derivative of the functional 

   









ll

dxxvxpdx
dx

vd
EIxvU

00

2

2

2

)()(
2

1
)(  

in the direction of )(x  is given by 

 
ll

dxxxpdx
dx

xd

dx

xvd
EI

00
2

2

2

2

)()(
)()( 

. 
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1.7 Vector Calculus 2 - Integration 
 
 
1.7.1 Ordinary Integrals of a Vector 
 
A vector can be integrated in the ordinary way to produce another vector, for example 
 

   321

2

1

32
2

1
2 3

2

15

6

5
32 eeeeee  dtttt  

 
 
1.7.2 Line Integrals 
 
Discussed here is the notion of a definite integral involving a vector function that 
generates a scalar. 
 
Let 332211 eeex xxx   be a position vector tracing out the curve C between the points 

1p  and 2p .  Let f be a vector field.  Then  
 

  
CC

p

p

dxfdxfdxfdd 332211

2

1

xfxf  

 
is an example of a line integral. 
 
Example (of a Line Integral) 
 
A particle moves along a path C from the point )0,0,0(  to )1,1,1( , where C is the straight 
line joining the points, Fig. 1.7.1.  The particle moves in a force field given by 
 

  3
2
3123212

2
1 201463 eeef xxxxxx   

 
What is the work done on the particle? 
 

 
 

Figure 1.7.1: a particle moving in a force field 
 





C

f

xd
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Solution 
The work done is 

 

   
CC

dxxxdxxxdxxxdW 3
2
3123212

2
1 201463xf  

 
The straight line can be written in the parametric form txtxtx  321 ,, , so that 

 

 
3

13
61120

1

0

23   dttttW      or      
3

13
321  

CC

dtdt
dt

d
W eeef

x
f  

■  
 

If C is a closed curve, i.e. a loop, the line integral is often denoted  
C

dxv . 

 
Note: in fluid mechanics and aerodynamics, when v is the velocity field, this integral 

C d v x  is called the circulation of v about C. 

 
 
1.7.3 Conservative Fields 
 
If for a vector f one can find a scalar   such that 
 

f      (1.7.1) 
 
then 
 

(1)  
2

1

p

p

dxf   is independent of the path C joining 1p  and 2p  

(2) 0
C

dxf  around any closed curve C 

 
In such a case, f is called a conservative vector field and   is its scalar potential1.  For 
example, the work done by a conservative force field f is 
 

)()( 12

2

1

2

1

2

1

2

1

ppddx
x

dd
p

p

p

p

i
i

p

p

p

p

 



  xxf  

 
which clearly depends only on the values at the end-points 1p  and 2p , and not on the 
path taken between them. 
 
It can be shown that a vector f is conservative if and only if of curl   {▲Problem 3}. 
 

                                                 
1 in general, of course, there does not exist a scalar field   such that f ; this is not surprising since a 

vector field has three scalar components whereas   is determined from just one 
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Example (of a Conservative Force Field) 
 
The gravitational force field 3ef mg  is an example of a conservative vector field.  

Clearly, of curl , and the gravitational scalar potential is 3mgx : 

 

     12132333 )()(
2

1

2

1

pppxpxmgdxmgdmgW
p

p

p

p

   xe  

■  
 
 
Example (of a Conservative Force Field) 
 
Consider the force field 
 

3
2
312

2
11

3
321 3)2( eeef xxxxxx   

 
Show that it is a conservative force field, find its scalar potential and find the work done 
in moving a particle in this field from )1,2,1(   to )4,1,3( . 
 
Solution 
 
One has 

 

o

eee

f 



2
31

2
1

3
321

321

321

32

///curl

xxxxxx

xxx  

 
so the field is conservative. 
 
To determine the scalar potential, let 
 

3
3

2
2

1
1

332211 eeeeee
xxx

fff














. 

 
Equating coefficients and integrating leads to 
 

),(

),(

),(

11
3
31

312
2
1

32
3
312

2
1

xxrxx

xxqxx

xxpxxxx













 

 
which agree if one chooses 2

2
1

3
31 ,,0 xxrxxqp  , so that 3

312
2
1 xxxx  , to which 

may be added a constant. 
 
The work done is 
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202)1,2,1()4,1,3(  W  
■  

 
Helmholtz Theory 
 
As mentioned, a conservative vector field which is irrotational, i.e. f , implies 

of  , and vice versa.  Similarly, it can be shown that if one can find a vector a such 
that af  , where a is called the vector potential, then f is solenoidal, i.e. 0 f  
{▲Problem 4}.  
 
Helmholtz showed that a vector can always be represented in terms of a scalar potential 
  and a vector potential a:2 
 

Type of Vector Condition Representation 
General  af    

Irrotational (conservative) of   f  
Solenoidal 0 f  af   

 
 
1.7.4 Double Integrals 
 
The most elementary type of two-dimensional integral is that over a plane region.  For 
example, consider the integral over a region R in the 21 xx   plane, Fig. 1.7.2.  The 
integral  
 


R

dxdx 21  

 
then gives the area of R and, just as the one dimensional integral of a function gives the 
area under the curve, the integral 
 


R

dxdxxxf 2121 ),(  

 
gives the volume under the (in general, curved) surface ),( 213 xxfx  .  These integrals 

are called double integrals.  
 
 

                                                 
2 this decomposition can be made unique by requiring that 0f   as x ; in general, if one is given f, 
then   and a can be obtained by solving a number of differential equations 
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Figure 1.7.2: integration over a region 
 
 
Change of variables in Double Integrals  
 

To evaluate integrals of the type R dxdxxxf 2121 ),( , it is often convenient to make a 

change of variable.  To do this, one must find an elemental surface area in terms of the 
new variables, 21 , tt  say, equivalent to that in the 21 , xx  coordinate system, 21dxdxdS  . 
 
The region R over which the integration takes place is the plane surface 0),( 21 xxg .  
Just as a curve can be represented by a position vector of one single parameter t (cf. 
§1.6.2), this surface can be represented by a position vector with two parameters3, 1t  and 

2t : 
 

22121211 ),(),( eex ttxttx   
 
Parameterising the plane surface in this way, one can calculate the element of surface dS  
in terms of 21 , tt  by considering curves of constant 21 , tt , as shown in Fig. 1.7.3.  The 
vectors bounding the element are 
 

2
2

const 

)2(
1

1
const 

)1(

12
, dt

t
dddt

t
dd

tt 







x

xx
x

xx        (1.7.2) 

 
so the area of the element is given by  
 

dtdtJdtdt
tt

dddS 121
21

)2()1( 








xx

xx   (1.7.3) 

 
where J is the Jacobian of the transformation, 
 

                                                 
3 for example, the unit circle 2 2

1 2 1 0x x    can be represented by 221121 sincos eex tttt  , 10 1t , 

20 2  t  ( 21 , tt  being in this case the polar coordinates r,  , respectively) 

 

1x

2x

3x

R

),( 213 xxfx 
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2

2

1

2

2

1

1

1

2

2

2

1

1

2

1

1

or

t

x

t

x
t

x

t

x

J

t

x

t

x
t

x

t

x

J



























          (1.7.4) 

 
The Jacobian is also often written using the notation 
 

 
 21

21
2121 ,

,
,

tt

xx
JdtJdtdxdx




  

 
The integral can now be written as 
 


R

dtJdtttf 2121 ),(  

 

 
 

Figure 1.7.3: a surface element 
 
Example 
 

Consider a region R, the quarter unit-circle in the first quadrant, 2
12 10 xx  ,  

10 1  x .  The moment of inertia about the 1x  – axis is defined by 
 


R

x dxdxxI 21
2
21

 

  
Transform the integral into the new coordinate system 21, tt  by making the substitutions4 

212211 sin,cos ttxttx  .  Then 
 

1
212

212

2

2

1

2

2

1

1

1

cossin

sincos
t

ttt

ttt

t

x

t

x
t

x

t

x

J 
















  

                                                 
4 these are the polar coordinates, 21 , tt  equal to r,  , respectively 

)1(xd)2(xd

1t
11 tt 

2t

22 tt 

1x

2x

dS
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so 
 

16
sin 21

2/

0

2
2

1

0

3
11



   dtdtttI x  

■  
 
 
1.7.5 Surface Integrals 
 
Up to now, double integrals over a plane region have been considered.  In what follows, 
consideration is given to integrals over more complex, curved, surfaces in space, such as 
the surface of a sphere.   
 
Surfaces 
 
Again, a curved surface can be parameterized by 21, tt , now by the position vector 
 

321322121211 ),(),(),( eeex ttxttxttx   

 
One can generate a curve C on the surface S by taking )(11 stt  , )(22 stt   so that C has 
position vector, Fig. 1.7.4,  
 

   )(),( 21 ststs xx   
  
A vector tangent to C at a point p on S is, from Eqn. 1.6.3, 

 

ds

dt

tds

dt

tds

d 2

2

1

1 







xxx

 

 

 
 

Figure 1.7.4: a curved surface 
 
Many different curves C pass through p, and hence there are many different tangents, 
with different corresponding values of dsdtdsdt /,/ 21 .  Thus the partial derivatives 

21 /,/ tt  xx  must also both be tangential to C and so a normal to the surface at p is 
given by their cross-product, and a unit normal is 

1x

2x

3x

),( 21 ttx
)(sx

C

S
s



Section 1.7 

Solid Mechanics Part III                                                                                Kelly 57

 

2121

/
tttt 






















xxxx

n     (1.7.5) 

 
In some cases, it is possible to use a non-parametric form for the surface, for example 

cxxxg ),,( 321 , in which case the normal can be obtained simply from 

gg grad/gradn . 

 
Example (Parametric Representation and the Normal to a Sphere) 
 
The surface of a sphere of radius a can be parameterised as5 
  

 31221121 cossinsincossin eeex ttttta  ,         20,0 21  tt  

 
Here, lines of const1 t  are parallel to the 21 xx   plane (“parallels”), whereas lines of 

const2 t  are “meridian” lines, Fig. 1.7.5.  If one takes the simple expressions 

stst  2/, 21  , over 2/0  s , one obtains a curve 1C  joining )1,0,0(  and )0,0,1( , 

and passing through )2/1,2/1,2/1( , as shown. 
 

 
 

Figure 1.7.5: a sphere 
 
The partial derivatives with respect to the parameters are 
 

 

 221121
2

31221121
1

cossinsinsin

sinsincoscoscos

ee
x

eee
x

tttta
t

ttttta
t









 

 
so that  

 311221
2

121
22

21

cossinsinsincossin eee
xx

tttttta
tt









 

                                                 
5 these are the spherical coordinates (see §1.6.10);   21 , tt  

1x
2x

3x

1C

2/1 t

n
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and a unit normal to the spherical surface is 
 

31221121 cossinsincossin eeen ttttt   

 
For example, at 4/21  tt  (this is on the curve 1C ), one has 
 

  32
1

22
1

12
14/,4/ eeen   

 
and, as expected, it is in the same direction as r. 

■  
 
Surface Integrals 
 

Consider now the integral dS
S f  where f is a vector function and S is some curved 

surface.  As for the integral over the plane region, 
 

21
21

const const 12
dtdt

tt
dddS

tt 







xx

xx , 

 
only now dS  is not “flat” and x is three dimensional.  The integral can be evaluated if 
one parameterises the surface with 21 , tt  and then writes 
 

21
21

dtdt
ttS 







xx

f  

 
One way to evaluate this cross product is to use the relation (Lagrange’s identity, 
Problem 15, §1.3) 
 

         cbdadbcadcba     (1.7.6) 
 
so that 
 

2

2122112121

2

21



















































































tttttttttttt

xxxxxxxxxxxx
   (1.7.7) 

 
Example (Surface Area of a Sphere) 
 
Using the parametric form for a sphere given above, one obtains  
 

1
24

2

21

sin ta
tt







 xx

 

 
so that 
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2
21

2

0 0

1
2 4sinarea adtdttadS

S


 

    

■  
 
Flux Integrals 
 
Surface integrals often involve the normal to the surface, as in the following example. 
 
Example 
 

If 3322
2
21314 eeef xxxxx  , evaluate dS

S
 nf , where S is the surface of the cube 

bounded by 1,0;1,0;1,0 321  xxx , and n is the unit outward normal, Fig. 1.7.6. 

 

 
 

Figure 1.7.6: the unit cube 
 
Solution 
 
The integral needs to be evaluated over the six faces.  For the face with 1en  , 11 x  
and 
 

  244 32

1

0

1

0

332

1

0

1

0

13322
2
213     dxdxxdxdxxxxxdS

S

eeeenf  

 

Similarly for the other five sides, whence 2
3 dS

S

nf . 

■  
 

Integrals of the form dS
S nf  are known as flux integrals and arise quite often in 

applications.  For example, consider a material flowing with velocity v, in particular the 
flow through a small surface element dS  with outward unit normal n, Fig. 1.7.7.  The 
volume of material flowing through the surface in time dt  is equal to the volume of the 
slanted cylinder shown, which is the base dS  times the height.  The slanted height is (= 

1x

2x

3x

2en 

3en 

1en 
2en 
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velocity × time) is dtv , and the vertical height is then dtnv  .  Thus the rate of flow is 

the volume flux (volume per unit time) through the surface element: dSnv  . 
 

 
 

Figure 1.7.7: flow through a surface element 
 
The total (volume) flux out of a surface S is then6 
 

volume flux:    dS
S
 nv     (1.7.8) 

 
Similarly, the mass flux is given by 
 

mass flux:    dS
S
 nv     (1.7.9) 

 
For more complex surfaces, one can write using Eqn. 1.7.3, 1.7.5, 
 

21
21

dtdt
tt

dS
S

S 














 
xx

fnf  

 
Example (of a Flux Integral) 
 

Compute the flux integral dS
S nf , where S is the parabolic cylinder represented by 

 
30,20, 31

2
12  xxxx  

 
and 331212 2 eeef xxx  , Fig. 1.7.8. 

 
Solution 
 
Making the substitutions 2311 , txtx  , so that 2

12 tx  , the surface can be represented 

by the position vector 
 

                                                 
6 if v acts in the same direction as n, i.e. pointing outward, the dot product is positive and this integral is 
positive; if, on the other hand, material is flowing in through the surface, v and n are in opposite directions 
and the dot product is negative, so the integral is negative 

n

v

dtnv  dtv
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322
2
111 eeex ttt  ,        30,20 21  tt  

 
Then 322111 /,2/ exeex  ttt  and  

 

211
21

2 ee
xx









t
tt

 

 
so the integral becomes 
 

    1222
3

0

2

0

2121132121
2
1   dtdttttt eeeee  

 

 
 

Figure 1.7.8: flux through a parabolic cylinder 
 
Note: in this example, the value of the integral depends on the choice of n.  If one chooses 

n  instead of n, one would obtain 12 .  The normal in the opposite direction (on the 
“other side” of the surface) can be obtained by simply switching 1t  and 2t , since 

1221 //// tttt  xxxx . 
■  

 
Surface flux integrals can also be evaluated by first converting them into double integrals 
over a plane region.  For example, if a surface S has a projection R on the 21 xx   plane, 

then an element of surface dS  is related to the projected element 21dxdx  through (see 
Fig. 1.7.9) 
 

  213cos dxdxdSdS  en  

 
and so 
 

 


RS
dxdxdS 21

3

1

en
nfnf  

1x
2x

3x

n f
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Figure 1.7.9: projection of a surface element onto a plane region 
 
 
The Normal and Surface Area Elements 
 
It is sometimes convenient to associate a special vector Sd  with a differential element of 
surface area dS , where 
 

dSd nS   
 
so that Sd  is the vector with magnitude dS  and direction of the unit normal to the 
surface.  Flux integrals can then be written as 
 

 
SS

ddS Sfnf  

 
 
1.7.6 Volume Integrals 
 
The volume integral, or triple integral, is a generalisation of the double integral. 
 
Change of Variable in Volume Integrals 
 
For a volume integral, it is often convenient to make the change of variables 

),,(),,( 321321 tttxxx  .  The volume of an element dV  is given by the triple scalar 

product (Eqns. 1.1.5, 1.3.17) 
 

321321
321

dtdtJdtdtdtdt
ttt

dV 



















xxx

   (1.7.10) 

 
where the Jacobian is now 
 

n3e

2x

1x
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1
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t
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                   (1.7.11) 

 
so that 
 

         
VV

dtdtdtJtttxtttxtttxdxdydzxxx 321321332123211321 ,,,,,,,,,, ff  

 
 
1.7.7 Integral Theorems 
 
A number of integral theorems and relations are presented here (without proof), the most 
important of which is the divergence theorem.  These theorems can be used to simplify 
the evaluation of line, double, surface and triple integrals.  They can also be used in 
various proofs of other important results. 
 
The Divergence Theorem 
 
Consider an arbitrary differentiable vector field ),( txv  defined in some finite region of 
physical space.  Let V be a volume in this space with a closed surface S bounding the 
volume, and let the outward normal to this bounding surface be n.  The divergence 
theorem of Gauss states that (in symbolic and index notation) 
 

 



V i

i

S

ii

VS

dV
x

v
dSnvdVdS vnv div      Divergence Theorem    (1.7.12) 

 
and one has the following useful identities {▲Problem 10} 
 













VS

VS

VS

dVdS

dVdS

dVdS

uun

n

unu

curl

grad

)(div





         (1.7.13) 

 
By applying the divergence theorem to a very small volume, one finds that 
 

V

dS
S

V

 




nv
v

0
limdiv  

 
that is, the divergence is equal to the outward flux per unit volume, the result 1.6.18. 
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Stoke’s Theorem 
 
Stoke’s theorem transforms line integrals into surface integrals and vice versa.  It states 
that 
 

   
CS

dsdS τfnfcurl     (1.7.14) 

 
Here C is the boundary of the surface S, n is the unit outward normal and dsd /rτ   is 
the unit tangent vector. 
 
As has been seen, Eqn. 1.6.24, the curl of the velocity field is a measure of how much a 
fluid is rotating.  The direction of this vector is along the direction of the local axis of 
rotation and its magnitude measures the local angular velocity of the fluid.  Stoke’s 
theorem then states that the amount of rotation of a fluid can be measured by integrating 
the tangential velocity around a curve (the line integral), or by integrating the amount of 
vorticity “moving through” a surface bounded by the same curve. 
 
Green’s Theorem and Related Identities 
 
Green’s theorem relates a line integral to a double integral, and states that 
 

   















RC

dxdx
xx

dxdx 21
2

1

1

2
2211


 ,   (1.7.15) 

 
where R is a region in the 21 xx   plane bounded by the curve C.  In vector form, Green’s 
theorem reads as 
 

 
RC

dxdxd 213curl efxf     where    2211 eef         (1.7.16) 

 
from which it can be seen that Green’s theorem is a special case of Stoke’s theorem, for 
the case of a plane surface (region) in the 21 xx   plane. 
 
It can also be shown that (this is Green’s first identity) 
 

   dVdS
VS
   gradgradgrad 2n         (1.7.17) 

 
Note that the term gradn  is the directional derivative of   in the direction of the 
outward unit normal.  This is often denoted as n / .  Green’s first identity can be 
regarded as a multi-dimensional “integration by parts” – compare the rule 

  vduuvudv  with the identity re-written as 

 

       dVdSdV
VSV
   n        (1.7.18) 
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or 
 

      dVdSdV
VSV
  unuu               (1.7.18) 

 
One also has the relation (this is Green’s second identity) 
 

      dVdS
VS
   22gradgrad nn   (1.7.19) 

 
 
1.7.8 Problems 
  
1. Find the work done in moving a particle in a force field given by 

1123121 1053 eeef xxxx   along the curve 12
1  tx , 2

2 2tx  , 3
3 tx  , from 1t  

to 2t .  (Plot the curve.) 
2. Show that the following vectors are conservative and find their scalar potentials: 

(i) 332211 eeex xxx   

(ii)  2112
21 eev xxe xx   

(iii) 332
2
2112 )/()/1( eeeu xxxx   

3. Show that if  f  then of curl . 
4. Show that if af   then 0 f . 
5. Find the volume beneath the surface 03

2
2

2
1  xxx  and above the square with 

vertices )0,0( , )0,1( , )1,1(  and )1,0(  in the 21 xx  plane. 

6. Find the Jacobian (and sketch lines of constant 21, tt ) for the rotation  




cossin

sincos

212

211

ttx

ttx




 

7. Find a unit normal to the circular cylinder with parametric representation 
10,20,sincos),( 1132211121  ttttatatt eeex  

8. Evaluate dS
S   where 321 xxx   and S is the plane surface 213 xxx  , 

120 xx  , 10 1  x . 

9. Evaluate the flux integral dS
S nf  where 321 22 eeef   and S is the cone 

  axxxax  3
2
2

2
13 ,  [Hint: first parameterise the surface with 21, tt .] 

10. Prove the relations in (1.7.13).  [Hint: first write the expressions in index notation.] 
11. Use the divergence theorem to show that 

VdS
S

3 nx
, 

where V is the volume enclosed by S (and x is the position vector). 
12. Verify the divergence theorem for 3

3
32

3
21

3
1 eeev xxx   where S is the surface of the 

sphere 22
3

2
2

2
1 axxx  . 

13. Interpret the divergence theorem (1.7.12) for the case when v is the velocity field.  
See (1.6.18, 1.7.8).  Interpret also the case of 0div v . 
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14. Verify Stoke’s theorem for 312312 eeef xxx   where S is 01 2
2

2
13  xxx  (so 

that C is the circle of radius 1 in the 21 xx   plane). 

15. Verify Green’s theorem for the case of 2122
2
11 ,2 xxxx   , with C the unit 

circle 12
2

2
1  xx .  The following relations might be useful: 

0cossincossin,cossin
2

0

22

0

2

0

22

0

2  


 dddd  

16. Evaluate  
C

dxf  using Green’s theorem, where 2
3
11

3
2 eef xx   and C is the circle 

42
2

2
1  xx . 

17. Use Green’s theorem to show that the double integral of the Laplacian of p over a 
region R is equivalent to the integral of n pnp grad/  around the curve C 
bounding the region: 

ds
n

p
dxdxp

CR
 


 21
2  

[Hint: Let 1221 /,/ xpxp   . Also, show that 

2
1

1
2 een

ds

dx

ds

dx
  

is a unit normal to C, Fig. 1.7.10] 
 

 
 

Figure 1.7.10: projection of a surface element onto a plane region 
 

 

ds

1dx
2dx

C
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1.8 Tensors 
 
Here the concept of the tensor is introduced.  Tensors can be of different orders – zeroth-
order tensors, first-order tensors, second-order tensors, and so on.  Apart from the zeroth 
and first order tensors (see below), the second-order tensors are the most important 
tensors from a practical point of view, being important quantities in, amongst other topics, 
continuum mechanics, relativity, electromagnetism and quantum theory. 
 
 
1.8.1 Zeroth and First Order Tensors 
 
A tensor of order zero is simply another name for a scalar  . 
 
A first-order tensor is simply another name for a vector u. 
 
 
1.8.2 Second Order Tensors 
 
Notation 
 
 Vectors:  lowercase bold-face Latin letters, e.g. a, r, q 
 2nd order Tensors: uppercase bold-face Latin letters, e.g. F, T, S 
 
Tensors as Linear Operators 
 
A second-order tensor T may be defined as an operator that acts on a vector u generating 
another vector v, so that vuT )( , or1 
 

vTuvuT  or  Second-order Tensor (1.8.1) 
 
The second-order tensor T is a linear operator (or linear transformation)2, which 
means that 
 

  TbTabaT   …  distributive 

   TaaT    …   associative  
 
This linearity can be viewed geometrically as in Fig. 1.8.1. 

 
Note: the vector may also be defined in this way, as a mapping u that acts on a vector v, 
this time generating a scalar α,  u v .  This transformation (the dot product) is linear 
(see properties (2,3) in §1.1.4).  Thus a first-order tensor (vector) maps a first-order tensor 
into a zeroth-order tensor (scalar), whereas a second-order tensor maps a first-order tensor 
into a first-order tensor.  It will be seen that a third-order tensor maps a first-order tensor 
into a second-order tensor, and so on. 

                                                 
1 both these notations for the tensor operation are used; here, the convention of omitting the “dot” will be 
used 
2 An operator or transformation is a special function which maps elements of one type into elements of a 
similar type; here, vectors into vectors 
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Figure 1.8.1: Linearity of the second order tensor 
 
 
Further, two tensors T and S are said to be equal if and only if 
 

TvSv   
 
for all vectors v. 
 
Example (of a Tensor) 
 
Suppose that F is an operator which transforms every vector into its mirror-image with 
respect to a given plane, Fig. 1.8.2.  F transforms a vector into another vector and the 
transformation is linear, as can be seen geometrically from the figure.  Thus F is a 
second-order tensor. 
 

 
 

Figure 1.8.2: Mirror-imaging of vectors as a second order tensor mapping 
 

■  
 
 
Example (of a Tensor) 
 
The combination u  linearly transforms a vector into another vector and is thus a 
second-order tensor3.  For example, consider a force f applied to a spanner at a distance r 
from the centre of the nut, Fig. 1.8.3.  Then it can be said that the tensor  r  maps the 
force f into the (moment/torque) vector fr  . 
 

                                                 
3 Some authors use the notation u~  to denote u  

a

b

ba 
Ta

Tb
 baT 

u

v

u

vu 

vF 

Fu

 uF 

 vuF 



Section 1.8 

Solid Mechanics Part III                                                                                Kelly 69

 

 
 

Figure 1.8.3: the force on a spanner 
■  

 
 
1.8.3 The Dyad (the tensor product) 
 
The vector dot product and vector cross product have been considered in previous 
sections.  A third vector product, the tensor product (or dyadic product), is important in 
the analysis of tensors of order 2 or more.  The tensor product of two vectors u and v is 
written as4 
 

vu   Tensor Product  (1.8.2) 
 
This tensor product is itself a tensor of order two, and is called dyad: 
 
  vu   is a scalar (a zeroth order tensor) 
  vu  is a vector (a first order tensor) 
  vu  is a dyad (a second order tensor) 
 
It is best to define this dyad by what it does: it transforms a vector w into another vector 
with the direction of u according to the rule5 
 

)()( wvuwvu       The Dyad Transformation (1.8.3) 
 
This relation defines the symbol “ ”. 
 
The length of the new vector is u  times wv  , and the new vector has the same direction 

as u , Fig. 1.8.4.  It can be seen that the dyad is a second order tensor, because it operates 
linearly on a vector to give another vector {▲Problem 2}. 
 
Note that the dyad is not commutative, uvvu  .  Indeed it can be seen clearly from 
the figure that    wuvwvu  . 
 

                                                 
4 many authors omit the   and write simply uv 
5 note that it is the two vectors that are beside each other (separated by a bracket) that get “dotted” together 

f

r
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Figure 1.8.4: the dyad transformation 
 
The following important relations follow from the above definition {▲Problem 4}, 

 
     

   wvuwvu

xuwvxwvu




         (1.8.4) 

 
It can be seen from these that the operation of the dyad on a vector is not commutative: 
 

   uwvwvu                 (1.8.5) 
 
 
Example (The Projection Tensor) 
 
Consider the dyad ee .  From the definition 1.8.3,    eueuee  .  But ue   is the 

projection of u onto a line through the unit vector e.  Thus  eue   is the vector projection 
of u on e.  For this reason ee  is called the projection tensor.  It is usually denoted by 
P. 
 

 
 

Figure 1.8.5: the projection tensor 
 

■  
 
 
 

u

v

ePu Pv

wvu )( 

u

w

v
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1.8.4 Dyadics 
 
A dyadic is a linear combination of these dyads (with scalar coefficients).  An example 
might be 

 
     fedcba  235  

 
This is clearly a second-order tensor.  It will be seen in §1.9 that every second-order 
tensor can be represented by a dyadic, that is 

 
       fedcbaT      (1.8.6) 

 
Note: second-order tensors cannot, in general, be written as a dyad,  T a b  – when 
they can, they are called simple tensors. 
 
 
Example (Angular Momentum and the Moment of Inertia Tensor) 
 
Suppose a rigid body is rotating so that every particle in the body is instantaneously 
moving in a circle about some axis fixed in space, Fig. 1.8.6. 
 

 
 

Figure 1.8.6: a particle in motion about an axis 
 
The body’s angular velocity ω  is defined as the vector whose magnitude is the angular 
speed   and whose direction is along the axis of rotation.  Then a particle’s linear 
velocity is  

 
rωv   

 
where wdv   is the linear speed, d is the distance between the axis and the particle, and r 
is the position vector of the particle from a fixed point O on the axis.  The particle’s 
angular momentum (or moment of momentum) h about the point O is defined to be  

 
vrh  m  

 
where m is the mass of the particle.  The angular momentum can be written as  

 

d

r

ω

v
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ωIh ˆ           (1.8.8) 
 

where Î , a second-order tensor, is the moment of inertia of the particle about the point 
O, given by 

 

 rrIrI  2ˆ m      (1.8.9) 

 
where I is the identity tensor, i.e. aIa   for all vectors a. 
 

To show this, it must be shown that  ωrrIrvr  2
.  First examine vr .  It is 

evidently a vector perpendicular to both r and v and in the plane of r and ω ; its 
magnitude is 

 

sin
2
ωrvrvr   

 
Now (see Fig. 1.8.7) 

 

   
 reeωr

ωrrωrωrrIr

 cos
2

22




 

 
where e  and re  are unit vectors in the directions of ω  and r respectively.  From the 

diagram, this is equal to heωr sin
2

.  Thus both expressions are equivalent, and one 

can indeed write ωIh ˆ  with Î  defined by Eqn. 1.8.9: the second-order tensor Î  maps 
the angular velocity vector ω  into the angular momentum vector h of the particle. 

 

 
 

Figure 1.8.7: geometry of unit vectors for angular momentum calculation 
 

■  
 
 
1.8.5 The Vector Space of Second Order Tensors 
 
The vector space of vectors and associated spaces were discussed in §1.2.  Here, spaces of 
second order tensors are discussed. 
 
As mentioned above, the second order tensor is a mapping on the vector space V, 

e

re

recos

cos

he

sin
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VV :T                                                         (1.8.10) 

 
and follows the rules 
 

 
   TaaT

TbTabaT

 


                                             (1.8.11) 

 
for all Vba,  and R .  
 
Denote the set of all second order tensors by 2V .  Define then the sum of two tensors 

2, VTS  through the relation 
 

  TvSvvTS                                                  (1.8.12) 
 
and the product of a scalar R  and a tensor 2VT  through 
 

  TvvT                                                       (1.8.13) 
 
Define an identity tensor 2VI  through 
 

vIv  ,    for all Vv                                              (1.8.14) 
 
and a zero tensor 2VO  through 
 

oOv  ,    for all Vv                                            (1.8.15)  
 
It follows from the definition 1.8.11 that 2V  has the structure of a real vector space, that 
is, the sum 2V TS , the product 2VT , and the following 8 axioms hold:  
 
1. for any 2,, VCBA , one has )()( CBACBA   

2. there exists an element 2VO  such that TTOOT   for every 2VT  
3. for each 2VT  there exists an element 2VT , called the negative of T, such that 

0)()(  TTTT  

4. for any 2, VTS , one has STTS   

5. for any 2, VTS  and scalar R , TSTS   )(    

6. for any 2VT  and scalars R , , TTT   )(  

7. for any 2VT  and scalars R , , TT )()(    

8. for the unit scalar R1 , TT 1  for any 2VT . 
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1.8.6 Problems 
 
1. Consider the function f which transforms a vector v into  va .  Is f a tensor (of 

order one)? [Hint: test to see whether the transformation is linear, by examining 
 vuf  .] 

2. Show that the dyad is a linear operator, in other words, show that 
  xvuwvuxwvu )()()(    

3. When is abba  ? 
4. Prove that 

(i)      xuwvxwvu   [Hint: post-“multiply” both sides of the definition 

(1.8.3) by x ; then show that      xwvuxwvu  .] 

(ii)    wvuwvu   [hint: pre “multiply” both sides by x  and use the result of 
(i)] 

5. Consider the dyadic (tensor) bbaa  .  Show that this tensor orthogonally 
projects every vector v onto the plane formed by a and b (sketch a diagram). 

6. Draw a sketch to show the meaning of  Pvu  , where P is the projection tensor.  
What is the order of the resulting tensor? 

7. Prove that   ababba . 
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1.9 Cartesian Tensors 
 
As with the vector, a (higher order) tensor is a mathematical object which represents 
many physical phenomena and which exists independently of any coordinate system.  In 
what follows, a Cartesian coordinate system is used to describe tensors. 
 
 
1.9.1 Cartesian Tensors 
 
A second order tensor and the vector it operates on can be described in terms of Cartesian 
components.  For example, cba )(  , with 3212 eeea  , 321 2 eeeb   and 

321 eeec  , is 

 

321 224)()( eeecbacba   

 
Example (The Unit Dyadic or Identity Tensor) 
 
The identity tensor, or unit tensor, I, which maps every vector onto itself, has been 
introduced in the previous section.  The Cartesian representation of I is 

 

ii eeeeeeee  332211        (1.9.1) 

 
This follows from 

 
       

     

u

eee

ueeueeuee

ueeueeueeueeeeee







332211

332211

332211332211

uuu
 

 
Note also that the identity tensor can be written as  jiij eeI   , in other words the 

Kronecker delta gives the components of the identity tensor in a Cartesian coordinate 
system. 

■  
 
 
Second Order Tensor as a Dyadic 
 
In what follows, it will be shown that a second order tensor can always be written as a 
dyadic involving the Cartesian base vectors ei 

1. 
 
Consider an arbitrary second-order tensor T which operates on a to produce b, baT )( , 

or beT )( iia .  From the linearity of T, 

 

                                                 
1 this can be generalised to the case of non-Cartesian base vectors, which might not be orthogonal nor of 
unit magnitude (see §1.16) 
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beTeTeT  )()()( 332211 aaa  
 
Just as T transforms a into b, it transforms the base vectors ei into some other vectors; 
suppose that weTveTueT  )(,)(,)( 321 , then 

 

     
     
 aeweveu

aewaevaeu

weaveauea

wvub

321

321

321

321





 aaa

 

 
and so 
 

321 eweveuT      (1.9.2) 

 
which is indeed a dyadic. 
 
Cartesian components of a Second Order Tensor 
 
The second order tensor T can be written in terms of components and base vectors as 
follows: write the vectors u, v and w in (1.9.2) in component form, so that 
 

     






133122111

321332211

eeeeee

eeeeeeT

uuu

uuu

 
 
Introduce nine scalars ijT  by letting 321 ,, iiiiii TwTvTu  , so that 

 

333323321331

322322221221

311321121111

eeeeee

eeeeee

eeeeeeT






TTT

TTT

TTT

 Second-order Cartesian Tensor (1.9.3) 

 
These nine scalars ijT  are the components of the second order tensor T in the Cartesian 

coordinate system.  In index notation, 
 

 jiijT eeT   

 
Thus whereas a vector has three components, a second order tensor has nine components.  
Similarly, whereas the three vectors  ie  form a basis for the space of vectors, the nine 

dyads  ji ee   form a basis for the space of tensors, i.e. all second order tensors can be 

expressed as a linear combination of these basis tensors. 
 
It can be shown that the components of a second-order tensor can be obtained directly 
from {▲Problem 1} 
 

jiijT Tee        Components of a Tensor         (1.9.4) 
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which is the tensor expression analogous to the vector expression ue  iiu .  Note that, 

in Eqn. 1.9.4, the components can be written simply as jiTee  (without a “dot”), since 

jiji eTeTee  . 

 
Example (The Stress Tensor) 
 
Define the traction vector t acting on a surface element within a material to be the force 
acting on that element2 divided by the area of the element, Fig. 1.9.1.  Let n  be a vector 
normal to the surface.  The stress σ  is defined to be that second order tensor which maps 
n onto t, according to 
 

σnt    The Stress Tensor  (1.9.5) 
 

 
 

Figure 1.9.1: stress acting on a plane 
 
If one now considers a coordinate system with base vectors ie , then jiij eeσ   and, 

for example, 
 

3312211111 eeeσe    

 
Thus the components 11 , 21  and 31  of the stress tensor are the three components of 

the traction vector which acts on the plane with normal 1e . 
 
Augustin-Louis Cauchy was the first to regard stress as a linear map of the normal vector 
onto the traction vector; hence the name “tensor”, from the French for stress, tension. 
 

■  
 
 
 

                                                 
2 this force would be due, for example, to intermolecular forces within the material: the particles on one side 
of the surface element exert a force on the particles on the other side 

1x

3x

2x

1e

t
11

21

31n

t
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Higher Order Tensors 
 
The above can be generalised to tensors of order three and higher.  The following notation 
will be used: 
 

, ,   …  0th-order tensors (“scalars”) 
a, b, c  … 1st-order tensors (“vectors”) 
A, B, C … 2nd-order tensors (“dyadics”) 
A, B, C … 3rd-order tensors (“triadics”) 
A, B, C  … 4th-order tensors (“tetradics”) 

 
An important third-order tensor is the permutation tensor, defined by 
 

kjiijk eee  E          (1.9.6) 

 
whose components are those of the permutation symbol, Eqns. 1.3.10-1.3.13. 
 
A fourth-order tensor can be written as 
 

lkjiijklA eeee A      (1.9.7) 

 
It can be seen that a zeroth-order tensor (scalar) has 130   component, a first-order tensor 
has 331   components, a second-order tensor has 932   components, so A  has 2733   
components and A has 81 components. 
 
 
1.9.2 Simple Contraction 
 
Tensor/vector operations can be written in component form, for example, 
 

 
  

ijij

ijkkij

kjikij

kkjiij

aT

aT

aT

aT

e

e

eee

eeeTa










    (1.9.8) 

 
This operation is called simple contraction, because the order of the tensors is contracted 
– to begin there was a tensor of order 2 and a tensor of order 1, and to end there is a 
tensor of order 1 (it is called “simple” to distinguish it from “double” contraction – see 
below).  This is always the case – when a tensor operates on another in this way, the order 
of the result will be two less than the sum of the original orders. 
 
An example of simple contraction of two second order tensors has already been seen in 
Eqn. 1.8.4a; the tensors there were simple tensors (dyads).  Here is another example: 
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 lijlij

lijkklij

lkjiklij

lkkljiij

ST

ST

ST

ST

ee

ee

eeee

eeeeTS










               (1.9.9) 

 
From the above, the simple contraction of two second order tensors results in another 
second order tensor.  If one writes TSA  , then the components of the new tensor are 
related to those of the original tensors through kjikij STA  . 

 
Note that, in general, 
 

         BAAB    

       BCACAB    … associative                         (1.9.10) 

  ACABCBA    … distributive 
 
The associative and distributive properties follow from the fact that a tensor is by 
definition a linear operator, §1.8.2; they apply to tensors of any order, for example,  
 

   BvAvAB                                                 (1.9.11) 
 
To deal with tensors of any order, all one has to remember is how simple tensors operate 
on each other – the two vectors which are beside each other are the ones which are 
“dotted” together: 
 

   
     

     
     febadcfedcba

edacbedcba

dacbdcba

acbcba







               (1.9.12) 

 
An example involving a higher order tensor is  
 

  
 nkjinlijkl

nmlkjimnijkl

EA

EA

eeee

eeeeeeE



A
 

 
and  
 

CA 






B

Cb

vAu

CAB

vu

A



 

 
Note the relation (analogous to the vector relation        a b c d a b c d , which 

follows directly from the dyad definition 1.8.3) {▲Problem 10} 
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     CDABDCBA                                         (1.9.13) 

         
Powers of Tensors 
 
Integral powers of tensors are defined inductively by IT 0 , TTT 1 nn , so, for 
example, 
 

TTT 2  The Square of a Tensor  (1.9.14) 
 

TTTT 3 , etc. 
 
 
1.9.3 Double Contraction 
 
Double contraction, as the name implies, contracts the tensors twice as much a simple 
contraction.  Thus, where the sum of the orders of two tensors is reduced by two in the 
simple contraction, the sum of the orders is reduced by four in double contraction.  The 
double contraction is denoted by a colon (:), e.g. ST : . 
 
First, define the double contraction of simple tensors (dyads) through 
 

      dbcadcba  :     (1.9.15) 
 
So in double contraction, one takes the scalar product of four vectors which are adjacent 
to each other, according to the following rule: 

For example, 
 

   
   

ijij

ljkiklij

lkkljiij

ST

ST

ST







eeee

eeeeST ::

   (1.9.16) 

 
which is, as expected, a scalar. 
 
Here is another example, the contraction of the two second order tensors I (see Eqn. 
1.9.1) and vu ,  
 

   
  

vu

veue

vueevuI







ii

ii

ii

vu

::

    (1.9.17) 

 

       faecdbfedcba  :
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so that the scalar product of two vectors can be written in the form of a double contraction 
involving the Identity Tensor. 
 
An example of double contraction involving the permutation tensor 1.9.6 is {▲Problem 
11} 
 

 :   u v u vE      (1.9.18) 

 
It can be shown that the components of a fourth order tensor are given by (compare with 
Eqn. 1.9.4) 
 

   lkjiijklA eeee  :: A     (1.9.19) 

 
In summary then, 
 

    BA :        
     b:A  

    cB :A  

     CB :A  
 
Note the following identities: 
 

     
     

         CBDADACBDCBA

CBABACCBA

ACBCBACBA

:::

:::

:::





                 (1.9.20) 

 
Note: There are many operations that can be defined and performed with tensors.  The 
two most important operations, the ones which arise most in practice, are the simple and 
double contractions defined above.  Other possibilities are: 
(a) double contraction with two “horizontal” dots,  T S ,  bA , etc., which is based on 

the definition of the following operation as applied to simple tensors: 
                 a b c d e f b e c d a f  

(b) operations involving one cross   :              a b c d a d b c  

(c) “double” operations involving the cross    and dot: 

       

       

       

     
    
    

a b c d a c b d

a b c d a c b d

a b c d a c b d

 

 
 
1.9.4 Index Notation 
 
The index notation for single and double contraction of tensors of any order can easily be 
remembered.  From the above, a single contraction of two tensors implies that the indices 
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“beside each other” are the same3, and a double contraction implies that a pair of indices 
is repeated.  Thus, for example, in both symbolic and index notation: 
 

ijkijk

ijkmkijm

cBA

CBA





cB

B

:A

CA
                  (1.9.21) 

 
 
1.9.5 Matrix Notation 
 
Here the matrix notation of §1.4 is extended to include second-order tensors4.  The 
Cartesian components of a second-order tensor can conveniently be written as a 33  
matrix,  
 

 

















333231

132221

131211

TTT

TTT

TTT

T

 
 
The operations involving vectors and second-order tensors can now be written in terms of 
matrices, for example, 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
The tensor product can be written as (see §1.4.1) 
 

  

















332313

322212

312111
T

vuvuvu

vuvuvu

vuvuvu

vuvu                               (1.9.22) 

 
which is consistent with the definition of the dyadic transformation, Eqn. 1.8.3. 
 
 
 

                                                 
3 compare with the “beside each other rule” for matrix multiplication given in §1.4.1 
4 the matrix notation cannot be used for higher-order tensors 

  






















































333232131

323222121

313212111

3

2

1

333231

132221

131211

TTT

TTT

TTT

uTuTuT

uTuTuT

uTuTuT

u

u

u

uTTu

symbolic 
notation 

“short” 
matrix 

notation 

“full” 
matrix 

notation 
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1.9.6 Problems 
 
1. Use Eqn. 1.9.3 to show that the component 11T  of a tensor T can be evaluated from 

11Tee , and that 2112 TeeT  (and so on, so that jiijT Tee ). 

2. Evaluate aT  using the index notation (for a Cartesian basis).  What is this operation 
called?  Is your result equal to Ta , in other words is this operation commutative?  
Now carry out this operation for two vectors, i.e. ba  .  Is it commutative in this case? 

3. Evaluate the simple contractions bA  and BA , with respect to a Cartesian coordinate 
system (use index notation). 

4. Evaluate the double contraction B:A  (use index notation). 
5. Show that, using a Cartesian coordinate system and the index notation, that the double 

contraction b:A  is a scalar.  Write this scalar out in full in terms of the components 
of A  and b. 

6. Consider the second-order tensors 

33232231

33322211

364

523

eeeeeeeeF

eeeeeeeeD




 

Compute DF  and DF : . 
7. Consider the second-order tensor  

3322122111 243 eeeeeeeeeeD  . 

Determine the image of the vector 321 524 eeer   when D operates on it. 

8. Write the following out in full – are these the components of scalars, vectors or 
second order tensors? 

(a) iiB  

(b) kkjC  

(c) mnB  

(d) ijji Aba  

9. Write    dcba  :  in terms of the components of the four vectors.  What is the 
order of the resulting tensor? 

10. Verify Eqn. 1.9.13. 
11. Show that  :   u v u vE  – see (1.9.6, 1.9.18).  [Hint: use the definition of the 

cross product in terms of the permutation symbol, (1.3.14), and the fact that 

kjiijk   .] 
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1.10 Special Second Order Tensors & Properties of 
Second Order Tensors 

 
In this section will be examined a number of special second order tensors, and special 
properties of second order tensors, which play important roles in tensor analysis.  Many 
of the concepts will be familiar from Linear Algebra and Matrices.  The following will be 
discussed: 
 
• The Identity tensor 
• Transpose of a tensor 
• Trace of a tensor 
• Norm of a tensor 
• Determinant of a tensor 
• Inverse of a tensor 
• Orthogonal tensors 
• Rotation Tensors 
• Change of Basis Tensors 
• Symmetric and Skew-symmetric tensors 
• Axial vectors 
• Spherical and Deviatoric tensors 
• Positive Definite tensors 
 
 
1.10.1 The Identity Tensor 
 
The linear transformation which transforms every tensor into itself is called the identity 
tensor.  This special tensor is denoted by I so that, for example, 
 

aIa =   for any vector a 
 
In particular, 332211 ,, eIeeIeeIe === , from which it follows that, for a Cartesian 
coordinate system, ijijI δ= .  In matrix form, 
 

[ ]















=

100
010
001

I         (1.10.1) 

 
 
1.10.2 The Transpose of a Tensor 
 
The transpose of a second order tensor A with components ijA  is the tensor TA  with 
components jiA ; so the transpose swaps the indices, 
 

jijijiij AA eeAeeA ⊗=⊗= T,   Transpose of a Second-Order Tensor   (1.10.2) 
 



Section 1.10 

Solid Mechanics Part III                                                                                Kelly 85 

In matrix notation, 
 

[ ] [ ]















=
















=

332313

322212

312111
T

333231

232221

131211

,
AAA
AAA
AAA

AAA
AAA
AAA

AA  

 
Some useful properties and relations involving the transpose are {▲Problem 2}: 
 

( )
( )

( )

( )

( ) ( ) ( ) BACCABBCA
vAuAvu

BABA
ABAB

uTuTuTTu
uvvu

BABA

AA

:::
)()(

::

,

TT

T

TT

TTT

TT

T

TTT

TT

==

⊗=⊗

=

=

==

⊗=⊗

+=+

=

βαβα

         (1.10.3) 

 
A formal definition of the transpose which does not rely on any particular coordinate 
system is as follows: the transpose of a second-order tensor is that tensor which satisfies 
the identity1 
 

uAvAvu T⋅=⋅         (1.10.4) 
 
for all vectors u and v.  To see that Eqn. 1.10.4 implies 1.10.2, first note that, for the 
present purposes, a convenient way of writing the components ijA  of the second-order 
tensor A is ( )ijA .  From Eqn. 1.9.4, ( ) jiij AeeA ⋅=  and the components of the transpose 

can be written as ( ) jiij eAeA TT ⋅= .  Then, from 1.10.4, 

( ) ( ) jijiijjiij A==⋅=⋅= AAeeeAeA TT . 
 
 
1.10.3 The Trace of a Tensor 
 
The trace of a second order tensor A, denoted by Atr , is a scalar equal to the sum of the 
diagonal elements of its matrix representation.  Thus (see Eqn. 1.4.3) 
 

iiA=Atr  Trace         (1.10.5) 
 
A more formal definition, again not relying on any particular coordinate system, is 
 

AIA :tr =  Trace       (1.10.6) 

 
1 as mentioned in §1.9, from the linearity of tensors, AvuvuA ⋅=⋅  and, for this reason, this expression is 
usually written simply as uAv  
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and Eqn. 1.10.5 follows from 1.10.6 {▲Problem 4}.  For the dyad vu⊗  {▲Problem 5},  
 

( ) vuvu ⋅=⊗tr       (1.10.7) 
 
Another example is 
 

( ) ( )
qiiq

rpqrpqjiij

EE
EE

=

⊗⊗=
=

eeee
EIE

:
:)tr( 22

δ   (1.10.8) 

 
This and other important traces, and functions of the trace are listed here {▲Problem 6}: 
 

( )
( ) kkjjii

jjii

kijkij

jiij

ii

AAA

AA

AAA

AA
A

=

=

=

=

=

3

2

3

2

tr

tr

tr

tr
tr

A

A

A

A
A

                (1.10.9) 

 
Some useful properties and relations involving the trace are {▲Problem 7}: 
 

( ) ( )
( )
( )

( ) ( ) ( ) ( )TTTT

T

trtrtrtr:
trtr

trtrtr
trtr
trtr

BAABABBABA
AA

BABA
BAAB

AA

====

=
+=+

=
=

αα
      (1.10.10) 

 
The double contraction of two tensors was earlier defined with respect to Cartesian 
coordinates, Eqn. 1.9.16.  This last expression allows one to re-define the double 
contraction in terms of the trace, independent of any coordinate system. 
 
Consider again the real vector space of second order tensors 2V  introduced in §1.8.5.  
The double contraction of two tensors as defined by 1.10.10e clearly satisfies the 
requirements of an inner product listed in §1.2.2.  Thus this scalar quantity serves as an 
inner product for the space 2V : 
 

( )BABABA Ttr:, =≡                                       (1.10.11) 
  
and generates an inner product space. 
 
Just as the base vectors { }ie  form an orthonormal set in the inner product (vector dot 
product) of the space of vectors V, so the base dyads { }ji ee ⊗  form an orthonormal set in 

the inner product 1.10.11 of the space of second order tensors 2V .  For example, 



Section 1.10 

Solid Mechanics Part III                                                                                Kelly 87 

 
( ) ( ) 1:, 11111111 =⊗⊗=⊗⊗ eeeeeeee                         (1.10.12) 

 
Similarly, just as the dot product is zero for orthogonal vectors, when the double 
contraction of two tensors A and B is zero, one says that the tensors are orthogonal, 
  

( ) 0tr: T == BABA ,     BA,  orthogonal                     (1.10.13) 
 
 
1.10.4 The Norm of a Tensor 
 
Using 1.2.8 and 1.10.11, the norm of a second order tensor A, denoted by A  (or A ), is 
defined by 
 

AAA :=               (1.10.14) 
 
This is analogous to the norm a  of a vector a, aa ⋅ . 
 
 
1.10.5 The Determinant of a Tensor 
 
The determinant of a second order tensor A is defined to be the determinant of the 
matrix [ ]A  of components of the tensor: 
 

kjiijk

kjiijk

AAA
AAA

AAA
AAA
AAA

321

321

333231

232221

131211

detdet

ε

ε

=

=
















=A

      (1.10.15) 

 
Some useful properties of the determinant are {▲Problem 8} 
 

( )
( )

( ) ( ) ( )[ ]cbaTTcTbTa
A
vu

AA
AA

BAAB

⋅×=⋅×

=
=⊗
=

=

=

det
det

0det
det)det(

detdet
detdet)det(

3

T

krjqipijkpqr AAAεε

αα        (1.10.16) 

 
Note that Adet , like Atr , is independent of the choice of coordinate system / basis. 
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1.10.6 The Inverse of a Tensor 
 
The inverse of a second order tensor A, denoted by 1−A , is defined by 
 

AAIAA 11 −− ==      (1.10.17) 
 
The inverse of a tensor exists only if it is non-singular (a singular tensor is one for 
which 0det =A ), in which case it is said to be invertible. 
 
Some useful properties and relations involving the inverse are: 
 

11

111

11

11

)(det)det(
)(

)/1()(
)(

−−

−−−

−−

−−

=

=

=

=

AA
ABAB

AA
AA

αα
                  (1.10.18) 

 
Since the inverse of the transpose is equivalent to the transpose of the inverse, the 
following notation is used: 
 

1TT1T )()( −−− =≡ AAA           (1.10.19) 
 
 

1.10.7 Orthogonal Tensors 
 
An orthogonal tensor Q is a linear vector transformation satisfying the condition 
 

vuQvQu ⋅=⋅          (1.10.20) 
 
for all vectors u and v.  Thus u is transformed to Qu , v is transformed to Qv  and the dot 
product vu ⋅  is invariant under the transformation.  Thus the magnitude of the vectors 
and the angle between the vectors is preserved, Fig. 1.10.1.  
 

 
 

Figure 1.10.1: An orthogonal tensor 
 
Since  
 

( )T T⋅ = ⋅ = ⋅ ⋅Qu Qv uQ Qv u Q Q v                            (1.10.21) 
 

θ
v

u

θ

Q

Qv

Qu
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it follows that for vu ⋅  to be preserved under the transformation, IQQ =T , which is also 
used as the definition of an orthogonal tensor.  Some useful properties of orthogonal 
tensors are {▲Problem 10}: 
 

1det

,
T1

TT

±=
=

====
−

Q
QQ

QQIQQ kjkiijjkik QQQQ δ

               (1.10.22) 

 
 
1.10.8 Rotation Tensors 
 
If for an orthogonal tensor, 1det +=Q , Q is said to be a proper orthogonal tensor, 
corresponding to a rotation.  If 1det −=Q , Q is said to be an improper orthogonal 
tensor, corresponding to a reflection.  Proper orthogonal tensors are also called rotation 
tensors. 
 
 
1.10.9 Change of Basis Tensors 
 
Consider a rotation tensor Q which rotates the base vectors 321 ,, eee  into a second set, 

321 ,, eee ′′′ , Fig. 1.10.2.   
 

3,2,1==′ iii Qee        (1.10.23) 
 
Such a tensor can be termed a change of basis tensor from { }ie  to { }ie′ .  The transpose  
QT rotates the base vectors ie′  back to ie  and is thus change of basis tensor from { }ie′  to 
{ }ie .  The components of Q in the ie  coordinate system are, from 1.9.4, jiijQ Qee=  and 
so, from 1.10.23, 
 

jiijjiij QQ eeeeQ ′⋅=⊗= , ,      (1.10.24) 
 
which are the direction cosines between the axes (see Fig. 1.5.4). 
 

 
 

Figure 1.10.2: Rotation of a set of base vectors 
 

2e Q

3e

1e

1e′

2e′

3e′
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The change of basis tensor can also be expressed in terms of the base vectors from both 
bases: 
 

ii eeQ ⊗′= ,     (1.10.25) 
 
from which the above relations can easily be derived, for example ii Qee =′ , IQQ =T , 
etc. 
 
Consider now the operation of the change of basis tensor on a vector: 
 

( ) iiii vv eQeQv ′==                                        (1.10.26) 
 
Thus Q transforms v into a second vector v′ , but this new vector has the same 
components with respect to the basis ie′ , as v has with respect to the basis ie , ii vv =′ .  
Note the difference between this and the coordinate transformations of §1.5: here there 
are two different vectors, v and v′ . 
 
Example 
 
Consider the two-dimensional rotation tensor  
 

( ) iiji eeeeQ ⊗′≡⊗







+

−
=

01
10

 

 
which corresponds to a rotation of the base vectors through 2/π .  The vector [ ]T11=v  
then transforms into (see Fig. 1.10.3) 
 

ii eeQv ′







+
+

=







+
−

=
1
1

1
1

 

 

 
 

Figure 1.10.3: a rotated vector 
 

■  
 
Similarly, for a second order tensor A, the operation 
 

( ) ( ) ( ) jiijjiijjiijjiij AAAA eeQeQeQeQeQeeQQAQ ′⊗′=⊗=⊗=⊗= TTT  
(1.10.27) 

 

vQv

1e

2e1e′

2e′
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results in a new tensor which has the same components with respect to the ie′ , as A has 
with respect to the ie , ijij AA =′ . 
 
 
1.10.10 Symmetric and Skew Tensors 
 
A tensor T is said to be symmetric if it is identical to the transposed tensor, TTT = , and 
skew (antisymmetric) if TTT −= . 
 
Any tensor A can be (uniquely) decomposed into a symmetric tensor S and a skew tensor 
W, where 
 

( )

( )T

T

2
1skew

2
1sym

AAWA

AASA

−=≡

+=≡
       (1.10.28) 

 
and 
 

TT , WWSS −==     (1.10.29) 
 
In matrix notation one has 
 

[ ] [ ]
















−−
−=
















=

0
0

0
,

2313

2312

1312

332313

232212

131211

WW
WW
WW

W
SSS
SSS
SSS

S   (1.10.30) 

 
Some useful properties of symmetric and skew tensors are {▲Problem 13}: 
 

( )
( )

( )

( )inverse no has0det
0
0tr

0:
:::

:::
T

2
1T

T
2
1T

=
=⋅
=

=

−=−=

+==

W
Wvv
SW
WS

BWBWBW

BBSBSBS

   (1.10.31) 

 
where v and B denote any arbitrary vector and second-order tensor respectively. 
 
Note that symmetry and skew-symmetry are tensor properties, independent of coordinate 
system. 
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1.10.11 Axial Vectors 
 
A skew tensor W has only three independent coefficients, so it behaves “like a vector” 
with three components.  Indeed, a skew tensor can always be written in the form 
 

uωWu ×=       (1.10.32) 
 
where u is any vector and ω  characterises the axial (or dual) vector of the skew tensor 
W.  The components of W can be obtained from the components of ω  through 
 

( ) ( )
( )

kijk

kkjipkjpki

jkkijijiijW

ωε

ωεεω

ω

−=

=⋅=

×⋅=×⋅=⋅=

ee
eeeeωeWee

  (1.10.33) 

 
If one knows the components of W, one can find the components of ω  by inverting this 
equation, whence {▲Problem 14} 
 

312213123 eeeω WWW −+−=     (1.10.34) 
 
Example (of an Axial Vector) 
 
Decompose the tensor 
 

[ ]















==

111
124
321

ijTT

 
 
into its symmetric and skew parts.  Also find the axial vector for the skew part.  Verify 
that aωWa ×=  for 1 3= +a e e . 
 
Solution 
 
One has  
 

[ ]















=
































+
















=+=

112
123
231

113
122
141

111
124
321

2
1

2
1 TTTS

 

T

1 2 3 1 4 1 0 1 1
1 1 4 2 1 2 2 1 1 0 0
2 2

1 1 1 3 1 1 1 0 0

  −     
       = − = − =        
      −      

W T T  

 
The axial vector is 
 

32312213123 eeeeeω +=−+−= WWW  
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and it can be seen that 
 

0 1 1 1 1
1 0 0 0 1
1 0 0 1 1

−     
     =     
     − −     

  or 

321

333312232111311

313131

)()()(
)()())((

eee
eee

eeeeeeWa

−+=
+++++=

+=+=+⊗=

WWWWWW
WWWW iiiijjijjiij δδ

 

 
and 
 

321

321

101
110 eee
eee

aω −+==×

 
■  

 
 
The Spin Tensor 
 
The velocity of a particle rotating in a rigid body motion is given by xωv ×= , where ω  
is the angular velocity vector and x is the position vector relative to the origin on the axis 
of rotation (see Problem 9, §1.1).  If the velocity can be written in terms of a skew-
symmetric second order tensor w , such that vwx = , then it follows from xωwx ×=  
that the angular velocity vector ω  is the axial vector of w .  In this context, w  is called 
the spin tensor. 
 
 
1.10.12 Spherical and Deviatoric Tensors 
 
Every tensor A can be decomposed into its so-called spherical part and its deviatoric 
part, i.e. 
 

AAA devsph +=        (1.10.35) 
 
where 
 

( )
( )

( )
( )

( )
( )

( )















++−
++−

++−
=

−=

















++
++

++
=

=

3322113
1

333231

233322113
1

2221

13123322113
1

11

3322113
1

3322113
1

3322113
1

3
1

sphdev
00

00
00

trsph

AAAAAA
AAAAAA
AAAAAA

AAA
AAA

AAA

AAA

IAA

 

      (1.10.36) 
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Any tensor of the form Iα  is known as a spherical tensor, while Adev  is known as a 
deviator of A, or a deviatoric tensor. 
 
Some important properties of the spherical and deviatoric tensors are 
 

0sph:dev
0)dev(sph
0)dev(tr

=
=
=

BA
A
A

         (1.10.37) 

 
 
1.10.13 Positive Definite Tensors 
 
A positive definite tensor A is one which satisfies the relation 
 

0>vAv ,      ov ≠∀                   (1.10.38)  
 
The tensor is called positive semi-definite if 0≥vAv . 
 
In component form, 
 

+++++= 2
222122131132112

2
111 vAvvAvvAvvAvAvAv jiji                (1.10.39) 

 
and so the diagonal elements of the matrix representation of a positive definite tensor 
must always be positive. 
 
It can be shown that the following conditions are necessary for a tensor A to be positive 
definite (although they are not sufficient): 
 
(i)  the diagonal elements of [ ]A  are positive 
(ii)  the largest element of [ ]A  lies along the diagonal 
(iii) 0det >A  
(iv)  ijjjii AAA 2>+  for ji ≠  (no sum over ji, ) 
 
These conditions are seen to hold for the following matrix representation of an example 
positive definite tensor: 
 

[ ]















−=

100
041
022

A  

 
A necessary and sufficient condition for a tensor to be positive definite is given in the 
next section, during the discussion of the eigenvalue problem. 
 
One of the key properties of a positive definite tensor is that, since 0det >A , positive 
definite tensors are always invertible. 
 
An alternative definition of positive definiteness is the equivalent expression 
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 0: >⊗ vvA                                               )40.10.1(  

 
 
1.10.14 Problems 
 
1. Show that the components of the (second-order) identity tensor are given by ijijI δ= . 
2. Show that 

(a) )()( T vAuAvu ⊗=⊗  
(b) ( ) ( ) ( ) BACCABBCA ::: TT ==  

3. Use (1.10.4) to show that II =T . 
4. Show that (1.10.6) implies (1.10.5) for the trace of a tensor. 
5. Show that ( ) vuvu ⋅=⊗tr . 
6. Formally derive the index notation for the functions  

3232 )tr(,)tr(,tr,tr AAAA  
7. Show that )(tr: TBABA = .  
8. Prove (1.10.16f), ( ) ( ) ( )[ ]cbaTTcTbTa ⋅×=⋅× det . 
9. Show that 3:)( T1 =− AA .  [Hint: one way of doing this is using the result from 

Problem 7.] 
10. Use 1.10.16b and 1.10.18d to prove 1.10.22c, 1det ±=Q . 
11. Use the explicit dyadic representation of the rotation tensor, ii eeQ ⊗′= , to show that 

the components of Q in the “second”, 321 xxxo ′′′ , coordinate system are the same as 
those in the first system [hint: use the rule jiijQ eQe ′⋅′=′ ] 

12. Consider the tensor D with components (in a certain coordinate system) 

















−

−

2/12/12/1
2/12/10
2/12/12/1

 

Show that D is a rotation tensor (just show that D is proper orthogonal).  
13. Show that ( ) 0tr =SW . 
14. Multiply across (1.10.32), kijkijW ωε−= , by ijpε  to show that kijijkW eω ε2

1−= .  [Hint: 
use the relation 1.3.19b, pkijkijp δεε 2= .] 

15. Show that ( )abba ⊗−⊗2
1  is a skew tensor W.  Show that its axial vector is 

( )abω ×= 2
1 .  [Hint: first prove that ( ) ( ) ( ) ( ) uabbaubuaaub ××=××=⋅−⋅ .] 

16. Find the spherical and deviatoric parts of the tensor A for which 1=ijA . 
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1.11 The Eigenvalue Problem and Polar Decomposition 
 
 
1.11.1 Eigenvalues, Eigenvectors and Invariants of a Tensor 
 
Consider a second-order tensor A.  Suppose that one can find a scalar   and a (non-zero) 
normalised, i.e. unit, vector n̂  such that 
 

nnA ˆˆ         (1.11.1) 
 
In other words, A transforms the vector n̂  into a vector parallel to itself, Fig. 1.11.1.  If 
this transformation is possible, the scalars are called the eigenvalues (or principal 
values) of the tensor, and the vectors are called the eigenvectors (or principal directions 
or principal axes) of the tensor.  It will be seen that there are three vectors n̂  (to each of 
which corresponds some scalar  ) for which the above holds. 
 

 
 

Figure 1.11.1: the action of a tensor A on a unit vector 
 
Equation 1.11.1 can be solved for the eigenvalues and eigenvectors by rewriting it as 
 

  0ˆ  nIA             (1.11.2) 
 
or, in terms of a Cartesian coordinate system, 
 

   

  0ˆˆ

0ˆˆ

0ˆˆ







iijij

rrijij

rrqppqkkjiij

nnA

nnA

nnA

e

ee

eeeeee







 

 
In full,  
 

 
 
  0ˆ)(ˆˆ

0ˆˆ)(ˆ

0ˆˆˆ)(

3333232131

2323222121

1313212111





e

e

e

nAnAnA

nAnAnA

nAnAnA





       (1.11.3) 

 
Dividing out the base vectors, this is a set of three homogeneous equations in three 
unknowns (if one treats   as known).  From basic linear algebra, this system has a 
solution (apart from 0ˆ in ) if and only if the determinant of the coefficient matrix is 

zero, i.e. if  
 

An̂ n̂
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0det)det(

333231

232221

131211






























AAA

AAA

AAA

IA                   (1.11.4) 

 
Evaluating the determinant, one has the following cubic characteristic equation of A, 
 

0IIIIII 23  AAA   Tensor Characteristic Equation  (1.11.5) 
 
where 
 

 
 

A

AA

A

A

A

A

det

III

)tr()(tr

II

tr

I

321

22
2
1

2
1











kjiijk

ijjijjii

ii

AAA

AAAA

A



                 (1.11.6) 

 
It can be seen that there are three roots 321 ,,  , to the characteristic equation.  Solving 

for  , one finds that 
 

321

133221

321

III

II

I











A

A

A

                   (1.11.7) 

 
The eigenvalues (principal values) i  must be independent of any coordinate system and, 

from Eqn. 1.11.5, it follows that the functions AAA III,II,I  are also independent of any 
coordinate system.  They are called the principal scalar invariants (or simply 
invariants) of the tensor. 
 
Once the eigenvalues are found, the eigenvectors (principal directions) can be found by 
solving 
 

0ˆ)(ˆˆ

0ˆˆ)(ˆ

0ˆˆˆ)(

333232131

323222121

313212111





nAnAnA

nAnAnA

nAnAnA





   (1.11.8) 

 
for the three components of the principal direction vector 321 ˆ,ˆ,ˆ nnn , in addition to the 

condition that  1ˆˆˆˆ  ii nnnn .  There will be three vectors iin en ˆˆ  , one corresponding to 

each of the three principal values. 
 
Note: a unit eigenvector n̂  has been used in the above discussion, but any vector parallel 
to n̂ , for example n̂ , is also an eigenvector (with the same eigenvalue  ): 

       ˆ ˆ ˆ ˆ       A n An n n  
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Example (of Eigenvalues and Eigenvectors of a Tensor) 
 
A second order tensor T is given with respect to the axes 321 xxOx  by the values 

 

 



















1120

1260

005

ijTT . 

 
Determine (a) the principal values, (b) the principal directions (and sketch them). 
  
Solution: 
(a) 
The principal values are the solution to the characteristic equation 
 

0)15)(5)(10(

1120

1260

005













 
 
which yields the three principal values 15,5,10 321   . 

(b) 
The eigenvectors are now obtained from   0 jijij nT  .  First, for 101  , 

 

09120

012160

0005

321

321

321





nnn

nnn

nnn

 
 
and using also the equation 1ii nn  leads to 321 )5/4()5/3(ˆ een  .  Similarly, for 

52   and 153  , one has, respectively, 

 

04120

012110

0000

321

321

321





nnn

nnn

nnn

    and    

016120

01290

00020

321

321

321





nnn

nnn

nnn

 

 
which yield 12ˆ en   and 323 )5/3()5/4(ˆ een  .  The principal directions are sketched in 

Fig. 1.11.2. 
 
Note: the three components of a principal direction, 1 2 3, ,n n n , are the direction cosines 

between that direction and the three coordinate axes respectively.  For example, for 1  

with  1 2 30, 3 / 5, 4 / 5n n n    , the angles made with the coordinate axes 1 2 3, ,x x x , are 

0, 127o and 37o. 
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Figure 1.11.2: eigenvectors of the tensor T 
■  

 
 
1.11.2 Real Symmetric Tensors 
 
Suppose now that A is a real symmetric tensor (real meaning that its components are 
real).  In that case it can be proved (see below) that1 

(i) the eigenvalues are real 
(ii) the three eigenvectors form an orthonormal basis  in̂ . 

 
In that case, the components of A can be written relative to the basis of principal 
directions as (see Fig. 1.11.3) 
 

 jiijA nnA ˆˆ                                                    (1.11.9) 

 

 
 

Figure 1.11.3: eigenvectors forming an orthonormal set 
 
The components of A in this new basis can be obtained from Eqn. 1.9.4, 
 

 














ji

ji

A

i

jji

jiij

,0

,

ˆˆ

ˆˆ



 nn

nAn

      (no summation over j)                  (1.11.10) 

 
where i  is the eigenvalue corresponding to the basis vector in̂ .  Thus2  

                                                 
1 this was the case in the previous example – the tensor is real symmetric and the principal directions are 
orthogonal 

1n̂

2n̂
3n̂

1e

2e

3e

3x

1x

2x

3n̂1n̂

2n̂
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3

1

ˆˆ
i

iii nnA   Spectral Decomposition   (1.11.11) 

 
This is called the spectral decomposition (or spectral representation) of A.  In matrix 
form, 
 

 

















3

2

1

00

00

00





A      (1.11.12) 

 
For example, the tensor used in the previous example can be written in terms of the basis 
vectors in the principal directions as 
 




















1500

050

0010

T ,         basis: ji nn ˆˆ   

 
To prove that real symmetric tensors have real eigenvalues and orthonormal eigenvectors, 
take 321 ˆ,ˆ,ˆ nnn  to be the eigenvectors of an arbitrary tensor A, with components 

iii nnn 321 ˆ,ˆ,ˆ , which are solutions of (the 9 equations – see Eqn. 1.11.2) 

 
 
 
  0ˆ

0ˆ

0ˆ

33

22

11





nIA

nIA

nIA





    (1.11.13) 

 
Dotting the first of these by 1n̂  and the second by 1n̂ , leads to 
 

 
  0ˆˆ

0ˆˆ

21212

21121




nnnAn

nnnAn




 

 
Using the fact that TA A , subtracting these equations leads to 
 

  0ˆˆ 2112  nn               (1.11.14) 
 
Assume now that the eigenvalues are not all real.  Since the coefficients of the 
characteristic equation are all real, this implies that the eigenvalues come in a complex 
conjugate pair, say 1  and 2 , and one real eigenvalue 3 .  It follows from Eqn. 1.11.13 

that the components of 1n̂  and 2n̂  are conjugates of each other, say iban 1ˆ , 

iban 2ˆ , and so 
 

                                                                                                                                                  
2 it is necessary to introduce the summation sign here, because the summation convention is only used when 
two indices are the same – it cannot be used when there are more than two indices the same 
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    0ˆˆ 22

21  bababann ii  

 
It follows from 1.11.14 that 012    which is a contradiction, since this cannot be true 
for conjugate pairs.  Thus the original assumption regarding complex roots must be false 
and the eigenvalues are all real.  With three distinct eigenvalues, Eqn. 1.11.14 (and 
similar) show that the eigenvectors form an orthonormal set.  When the eigenvalues are 
not distinct, more than one set of eigenvectors may be taken to form an orthonormal set 
(see the next subsection). 
 
Equal Eigenvalues 
 
There are some special tensors for which two or three of the principal directions are 
equal.  When all three are equal,   321 , one has IA  , and the tensor is 

spherical: every direction is a principal direction, since nnInA ˆˆˆ    for all n̂ .   When 
two of the eigenvalues are equal, one of the eigenvectors will be unique but the other two 
directions will be arbitrary – one can choose any two principal directions in the plane 
perpendicular to the uniquely determined direction, in order to form an orthonormal set. 
 
Eigenvalues and Positive Definite Tensors 
 
Since nnA ˆˆ  , then   nnnAn ˆˆˆˆ .  Thus if A is positive definite, Eqn. 1.10.38, the 
eigenvalues are all positive. 
 
In fact, it can be shown that a tensor is positive definite if and only if its symmetric part 
has all positive eigenvalues. 
 
Note: if there exists a non-zero eigenvector corresponding to a zero eigenvalue, then the 
tensor is singular.  This is the case for the skew tensor W, which is singular.  Since 

ωoωωWω 0  (see , §1.10.11), the axial vector ω  is an eigenvector 
corresponding to a zero eigenvalue of W. 
 
 
1.11.3 Maximum and Minimum Values 
 
The diagonal components of a tensor A, 332211, AAA , have different values in different 

coordinate systems.  However, the three eigenvalues include the extreme (maximum and 
minimum) possible values that any of these three components can take, in any coordinate 
system.  To prove this, consider an arbitrary set of unit base vectors 321 ,, eee , other than 

the eigenvectors.  From Eqn. 1.9.4, the components of A in a new coordinate system with 
these base vectors are jiijA Aee   Express 1e  using the eigenvectors as a basis, 

 

3211 ˆˆˆ nnne    

 
Then 
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  3
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A  

 
Without loss of generality, let 321   .  Then, with 1222   , one has 

 
 
  113

2
2

2
1

2222
33

113
2

2
2

1
2222

11

A

A








 

 
which proves that the eigenvalues include the largest and smallest possible diagonal 
element of A. 
 
 
1.11.4 The Cayley-Hamilton Theorem 
 
The Cayley-Hamilton theorem states that a tensor A (not necessarily symmetric) 
satisfies its own characteristic equation 1.11.5: 
 

0IAAA AAA  IIIIII 23    (1.11.15) 
 
This can be proved as follows: one has nnA ˆˆ  , where   is an eigenvalue of A and n̂  
is the corresponding eigenvector.  A repeated application of A to this equation leads to 

nnA ˆˆ nn  .  Multiplying 1.11.5 by n̂  then leads to 1.11.15. 
 
The third invariant in Eqn. 1.11.6 can now be written in terms of traces by a double 
contraction of the Cayley-Hamilton equation with I, and by using the definition of the 
trace, Eqn.1.10.6: 
 

 
 3

2
12

2
33

3
1

22
2
123

23

23

)tr(trtrtrIII

0III3trtr)tr(trtrtr

0III3trIItrItr

0:III:II:I:

AAAA

AAAAAA

AAA

IIIAIAIA

A

A

AAA

AAA









             (1.11.16) 

 
The three invariants of a tensor can now be listed as 
 

 
 3

2
12

2
33

3
1

22
2
1

)tr(trtrtrIII

)tr()(trII

trI

AAAA

AA

A

A

A

A







     Invariants of a Tensor  (1.11.17) 

 
The Deviatoric Tensor 
 
Denote the eigenvalues of the deviatoric tensor devA, Eqn. 1.10.36, 321 ,, sss  and the 

principal scalar invariants by 321 ,, JJJ .  The characteristic equation analogous to Eqn. 

1.11.5 is then 
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032

2
1

3  JsJsJs           (1.11.18) 

 
and the deviatoric invariants are3 
 

        
  3213

133221
22

2
1

2

3211

devdet

devtrdevtr

)dev(tr

sssJ

ssssssJ

sssJ







A

AA

A

            (1.11.19) 

 
From Eqn. 1.10.37,  
 

01 J            (1.11.20) 
 

The second invariant can also be expressed in the useful forms {▲Problem 4} 
 

 2
3

2
2

2
12

1
2 sssJ  ,        (1.11.21) 

 
and, in terms of the eigenvalues of A, {▲Problem 5} 

 

      2
13

2
32

2
212 6

1  J .     (1.11.22) 

 
Further, the deviatoric invariants are related to the tensor invariants through {▲Problem 
6} 
 

   AAAAAA III27III9I2,II3I 3
27
1

3
2

3
1

2  JJ   (1.11.23) 

 
 
1.11.5 Coaxial Tensors 
 
Two tensors are coaxial if they have the same eigenvectors.  It can be shown that a 
necessary and sufficient condition that two tensors A and B be coaxial is that their simple 
contraction is commutative, BAAB  . 
 
Since for a tensor T, TTTT 11   , a tensor and its inverse are coaxial and have the same 
eigenvectors. 
 
 
 
 

                                                 
3 there is a convention (adhered to by most authors) to write the characteristic equation for a general tensor 

with a AII  term and that for a deviatoric tensor with a sJ 2  term (which ensures that 02 J  - see 

1.11.22 below)  ; this means that the formulae for J2 in Eqn. 1.11.19 are the negative of those for AII  in 

Eqn. 1.11.6 
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1.11.6 Fractional Powers of Tensors 
 
Integer powers of tensors were defined in §1.9.2.  Fractional powers of tensors can be 
defined provided the tensor is real, symmetric and positive definite (so that the 
eigenvalues are all positive). 
 
Contracting both sides of nnT ˆˆ   with T repeatedly gives ˆ ˆn nT n n .  It follows that, if 
T has eigenvectors in̂  and corresponding eigenvalues i , then nT  is coaxial, having the 

same eigenvectors, but corresponding eigenvalues n
i .  Because of this, fractional powers 

of tensors  are defined as follows: mT , where m is any real number, is that tensor which 
has the same eigenvectors as T but which has corresponding eigenvalues m

i .  For 

example, the square root of the positive definite tensor 



3

1

ˆˆ
i

iii nnT   is 

 





3

1

2/1 ˆˆ
i

iii nnT                                           (1.11.24) 

 
and the inverse is 
 




 
3

1

1 ˆˆ)/1(
i

iii nnT                                          (1.11.25) 

 
These new tensors are also positive definite. 
 
 
1.11.7 Polar Decomposition of Tensors 
 
Any (non-singular second-order) tensor F can be split up multiplicatively into an arbitrary 
proper orthogonal tensor R ( IRR T , 1det R ) and a tensor U as follows: 
 

RUF   Polar Decomposition     (1.11.26) 
 
The consequence of this is that any transformation of a vector a according to Fa  can be 
decomposed into two transformations, one involving a transformation U, followed by a 
rotation R. 
 
The decomposition is not, in general, unique; one can often find more than one 
orthogonal tensor R which will satisfy the above relation.  In practice, R is chosen such 
that U is symmetric.  To this end, consider FFT .  Since 
 

0
2T  FvFvFvFvFv , 

 
FFT  is positive definite.  Further, jkji FFFFT  is clearly symmetric, i.e. the same result 

is obtained upon an interchange of i and k.  Thus the square-root of FFT  can be taken: let 
U in 1.11.26 be given by 



Section 1.11 

Solid Mechanics Part III                                                                                Kelly 105

 

  2/1TFFU             (1.11.27) 
 
and U is also symmetric positive definite.  Then, with 1.10.3e, 
 

   

I

UUUU

FUFU

FUFURR














1T

1TT

1T1T

                                     (1.11.28) 

 
Thus if U is symmetric, R is orthogonal.  Further, from (1.10.16a,b) and (1.100.18d), 

FU detdet   and 1det/detdet  UFR  so that R is proper orthogonal.  It can also be 
proved that this decomposition is unique. 
 
An alternative decomposition is given by 
 

VRF            (1.11.29) 
 
Again, this decomposition is unique and R is proper orthogonal, this time with 
 

  2/1TFFV               (1.11.30) 
 
 
1.11.8 Problems 
 
1. Find the eigenvalues, (normalised) eigenvectors and principal invariants of  

1221 eeeeIT   
2. Derive the spectral decomposition 1.11.11 by writing the identity tensor as 

ii nnI ˆˆ  , and writing AIA  .  [Hint: in̂  is an eigenvector.] 

3. Derive the characteristic equation and Cayley-Hamilton equation for a 2-D space.  Let 

A be a second order tensor with square root AS  .  By using the Cayley-Hamilton 
equation for S, and relating SS tr,det  to AA tr,det  through the corresponding 

eigenvalues, show that 
AA

IAA
A

det2tr

det




 . 

4. The second invariant of a deviatoric tensor is given by Eqn. 1.11.19b,  
 1332212 ssssssJ   

By squaring the relation 03211  sssJ , derive Eqn. 1.11.21, 

 2
3

2
2

2
12

1
2 sssJ   

5. Use Eqns. 1.11.21 (and your work from Problem 4) and the fact that 2121 ss   , 
etc. to derive Eqn. 1.11.22. 

6. Use the fact that 0321  sss  to show that 
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A

 

where iim A3
1 .  Hence derive Eqns. 1.11.23. 

7. Consider the tensor 















 


100

011

022

F  

(a) Verify that the polar decomposition for F is RUF   where 















 


100

02/12/1

02/12/1

R ,      




















100

02/32/1

02/12/3

U  

(verify that R is proper orthogonal). 
(b) Evaluate FbFa, , where T]0,1,1[a , T]0,1,0[b  by evaluating the individual 

transformations UbUa,  followed by    UbRUaR , .  Sketch the vectors and their 
images.  Note how R rotates the vectors into their final positions.  Why does U 
only stretch a but stretches and rotates b? 

(c) Evaluate the eigenvalues i  and eigenvectors in̂  of the tensor FFT .  Hence 

determine the spectral decomposition (diagonal matrix representation) of FFT .  

Hence evaluate FFU T  with respect to the basis  in̂  – again, this will be a 

diagonal matrix. 
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1.12 Higher Order Tensors 
 
In this section are discussed some important higher (third and fourth) order tensors. 
 
 
1.12.1 Fourth Order Tensors 
 
After second-order tensors, the most commonly encountered tensors are the fourth order 
tensors A , which have 81 components.  Some properties and relations involving these 
tensors are listed here. 
 
 
Transpose 
 
The transpose of a fourth-order tensor A , denoted by TA , by analogy with the definition 
for the transpose of a second order tensor 1.10.4, is defined by 
 

BCCB :::: T AA       (1.12.1) 
 

for all second-order tensors B and C.  It has the property   AA 
TT  and its components 

are klijijkl )()( T AA  .  It also follows that 

 

  ABBA  T        (1.12.2) 
 
Identity Tensors 
 
There are two fourth-order identity tensors.  They are defined as follows: 
 

T:

:

AA

AA





I

I
     (1.12.3) 

 
And have components 
 

ijjilkjijkil

jijilkjijlik

eeeeeeee

eeeeeeee









I

I
  (1.12.4) 

 

For a symmetric second order tensor S, SSS  :: II . 
 
Another important fourth-order tensor is II  , 
 

jjiilkjiklij eeeeeeeeII       (1.12.5) 

 
Functions of the trace can be written in terms of these tensors {▲Problem 1}: 
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I

I
       (1.12.6) 

 
Projection Tensors 
 
The symmetric and skew-symmetric parts of a second order tensor A can be written in 
terms of the identity tensors: 
 

 
  AA

AA

:
2

1
skew

:
2

1
sym

II

II




          (1.12.7) 

 
The deviator of A, 1.10.36, can be written as 
 

AAIIIAIAIAAA :ˆ:)(
3

1
):(

3

1
)tr(

3

1
dev PI 






         (1.12.8) 

 

which defines P̂ , the so-called fourth-order projection tensor.  From Eqns. 1.10.6, 

1.10.37a, it has the property that 0::ˆ IAP .  Note also that it has the property 

PPPPP ˆˆ::ˆ:ˆˆ  n .   For example, 
 

PII

IIPPP

ˆ)(:)(
9

1

3

1

3

1
:

3

1
:

3

1ˆ:ˆˆ 2









 






 

IIIIIIII

IIII
                       (1.12.9) 

 

The tensors     2//2, IIII   in Eqn. 1.12.7 are also projection tensors, projecting the 
tensor A onto its symmetric and skew-symmetric parts. 
 
 
1.12.2 Higher-Order Tensors and Symmetry 
 
A higher order tensor possesses complete symmetry if the interchange of any indices is 
immaterial, for example if 
 

 )()()( kjijikkjiikjkjiijk AAA eeeeeeeeeA
 

 
It is symmetric in two of its indices if the interchange of these indices is immaterial.  For 
example the above tensor A  is symmetric in j and k if 
 

)()( kjiikjkjiijk AA eeeeee A
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This applies also to antisymmetry.  For example, the permutation tensor  

 kjiijk eee  E  is completely antisymmetric, since  kijikjijk  . 

 
A fourth-order tensor C  possesses the minor symmetries if 
 

ijlkijkljiklijkl CCCC  ,                     (1.12.10) 

 
in which case it has only 36 independent components.  The first equality here is for left 
minor symmetry, the second is for right minor symmetry. 
 
It possesses the major symmetries if it also satisfies 
 

klijijkl CC                  (1.12.11) 

 
in which case it has only 21 independent components.  From 1.12.1, this can also be 
expressed as 
 

ABBA :::: CC           (1.12.12) 
 

for arbitrary second-order tensors A, B.  Note that II ,, II  possess the major symmetries 
{▲Problem 2}. 
 
 
1.12.3 Problems 
 
1. Derive the relations 1.12.6. 

2. Use 1.12.12 to show that II ,, II  possess the major symmetries. 
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1.13 Coordinate Transformation of Tensor Components 
 
This section generalises the results of §1.5, which dealt with vector coordinate 
transformations.  It has been seen in §1.5.2 that the transformation equations for the 
components of a vector are jiji uQu ′= , where [ ]Q  is the transformation matrix.  Note that 
these ijQ ’s are not the components of a tensor – these sQij '  are mapping the components 
of a vector onto the components of the same vector in a second coordinate system – a 
(second-order) tensor, in general, maps one vector onto a different vector.  The equation 

jiji uQu ′=  is in matrix element form, and is not to be confused with the index notation for 
vectors and tensors. 
 
 
1.13.1 Relationship between Base Vectors 
 
Consider two coordinate systems with base vectors ie  and ie′ .  It has been seen in the 
context of vectors that, Eqn. 1.5.9, 
 

),cos( jiijji xxQ ′≡=′⋅ee .                                      (1.13.1) 
 
Recal that the i’s and j’s here are not referring to the three different components of a 
vector, but to different vectors (nine different vectors in all). 
 
Note that the relationship 1.13.1 can also be derived as follows: 
 

( )
( )

i i k k i

k i k

ik kQ

′ ′= = ⊗
′ ′= ⋅
′=

e Ie e e e
e e e

e
                                           (1.13.2) 

 
Dotting each side here with j′e  then gives 1.13.1.  Eqn. 1.13.2, together with the 
corresponding inverse relations, read 
 

jiji Q ee ′= ,     jjii Q ee =′                        (1.13.3) 
 
Note that the components of the transformation matrix [ ]Q  are the same as the 
components of the change of basis tensor 1.10.24-25. 
 
 
1.13.2 Tensor Transformation Rule 
 
As with vectors, the components of a (second-order) tensor will change under a change of 
coordinate system.  In this case, using 1.13.3, 
 

nmpqnqmp

nnqmmppq

qppqjiij

TQQ
QQT

TT

ee
ee

eeee

⊗′=

⊗′=

′⊗′′≡⊗

   (1.13.4) 



Section 1.13 

Solid Mechanics Part III                                                                                Kelly 111 

 
so that (and the inverse relationship) 
 

pqqjpiijpqjqipij TQQTTQQT =′′= ,    Tensor Transformation Formulae   (1.13.5) 
 
or, in matrix form, 
 

[ ] [ ][ ][ ] [ ] [ ][ ][ ]QTQTQTQT TT , =′′=            (1.13.6) 
 
Note: 
• as with vectors, second-order tensors are often defined as mathematical entities whose 

components transform according to the rule 1.13.5. 
• the transformation rule for higher order tensors can be established in the same way, for 

example, ijk pi qj rk pqrT Q Q Q T′ = , and so on. 
 
Example (Mohr Transformation) 
 
Consider a two-dimensional space with base vectors 21 , ee .  The second order tensor S 
can be written in component form as 
 

2222122121121111 eeeeeeeeS ⊗+⊗+⊗+⊗= SSSS  
 
Consider now a second coordinate system, with base vectors 21 , ee ′′ , obtained from the 
first by a rotation θ .  The components of the transformation matrix are 
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=








−

+
=








′⋅′⋅

′⋅′⋅
=′⋅=
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θθ

θθ
θθ
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cos)90cos(
)90cos(cos
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2111

eeee
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ee jiijQ
 

 
and the components of S in the second coordinate system are [ ] [ ][ ][ ]QSQS T=′ , so 
 








 −
















−

=







′′
′′

θθ
θθ

θθ
θθ

cossin
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1211

SS
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For S symmetric, 2112 SS = , and this simplifies to 
 

θθθ
θθθ

θθθ

2coscossin)(
2sincossin
2sinsincos

12112212

12
2

22
2

1122

12
2

22
2

1111

SSSS
SSSS
SSSS

+−=′
−+=′

++=′

    The Mohr Transformation    (1.13.7) 

■  
 
 
1.13.3 Isotropic Tensors 
 
An isotropic tensor is one whose components are the same under arbitrary rotation of the 
basis vectors, i.e. in any coordinate system. 
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All scalars are isotropic. 
 
There is no isotropic vector (first-order tensor), i.e. there is no vector u such that 

jiji uQu =  for all orthogonal [ ]Q  (except for the zero vector o).  To see this, consider the 
particular orthogonal transformation matrix 
 

[ ]















−=

100
001
010

Q ,                                              (1.13.8) 

 
which corresponds to a rotation of 2/π  about 3e .  This implies that  
 

[ ] [ ]T312
T

321 uuuuuu −=  
 

 or 021 == uu .  The matrix corresponding to a rotation of 2/π  about 1e  is 
 

[ ]
















−
=

010
100
001

Q ,                                              (1.13.9) 

 
which implies that 03 =u . 
 
The only isotropic second-order tensor is ijαδα ≡I , where α  is a constant, that is, the 
spherical tensor, §1.10.12.  To see this, first note that, by substituting Iα  into 1.13.6, it 
can be seen that it is indeed isotropic.  To see that it is the only isotropic second order 
tensor, first use 1.13.8 in 1.13.6 to get 
 

[ ]















=

















−
−

−−
=′

333231

232221

131211

333132

131112

232122

TTT
TTT
TTT

TTT
TTT
TTT

T            (1.13.10) 

 
which implies that 0,, 3231231321122211 ====−== TTTTTTTT .  Repeating this for 
1.13.9 implies that 0, 123311 == TTT , so 
 

[ ]















=

11

11

11

00
00
00

T
T

T
T  

 
or IT 11T= .  Multiplying by a scalar does not affect 1.13.6, so one has Iα . 
 
The only third-order isotropic tensors are scalar multiples of the permutation tensor, 

( )kjiijk eee ⊗⊗= εE .  Using the third order transformation rule, pqrrkqjpiijk TQQQT =′ , 
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one has pqrrkqjpiijk QQQ εε =′ .  From 1.10.16e this reads ( ) ijkijk εε Qdet=′ , where Q is the 
change of basis tensor, with components ijQ .  When Q is proper orthogonal, i.e. a rotation 
tensor, one has indeed, ijkijk εε =′ .  That it is the only isotropic tensor can be established 
by carrying out a few specific rotations as done above for the first and second order 
tensors. 
 
Note that orthogonal tensors in general, i.e. having the possibility of being reflection 
tensors, with 1det −=Q , are not used in the definition of isotropy, otherwise one would 
have the less desirable ijkijk εε −=′ .  Note also that this issue does not arise with the 
second order tensor (or the fourth order tensor –see below), since the above result, that 

Iα  is the only isotropic second order tensor, holds regardless of whether Q is proper 
orthogonal or not. 
 
There are three independent fourth-order isotropic tensors – these are the tensors 
encountered in §1.12.1, Eqns. 1.12.4-5, 
 

II ⊗,, II  
 
For example, 
 

( ) ( )( ) ( )ijklklijlrkrjpiprspqlskrjqippqrslskrjqip QQQQQQQQQQQQ IIII ⊗====⊗ δδδδ  
 
The most general isotropic fourth order tensor is then a linear combination of these 
tensors: 
 

IIC γµλ ++⊗= II  Most General Isotropic Fourth-Order Tensor    (1.13.11) 
 
 
1.13.4 Invariance of Tensor Components 
 
The components of (non-isotropic) tensors will change upon a rotation of base vectors.  
However, certain combinations of these components are the same in every coordinate 
system.  Such quantities are called invariants.  For example, the following are examples 
of scalar invariants {▲Problem 2} 
 

ii

jiij

ii

A
aaT

aa

=

=⋅
=⋅

A
aTa

aa

tr

    (1.13.12) 

 
The first of these is the only independent scalar invariant of a vector.  A second-order 
tensor has three independent scalar invariants, the first, second and third principal scalar 
invariants, defined by Eqn. 1.11.17 (or linear combinations of these). 
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1.13.5 Problems 
 
1. Consider a coordinate system 321 xxox  with base vectors ie .  Let a second coordinate 

system be represented by the set { }ie′  with the transformation law 

33

212 cossin
ee

eee
=′

+−=′ θθ
 

(a) find 1e′  in terms of the old set { }ie  of basis vectors 
(b) find the orthogonal matrix [ ]Q  and express the old coordinates in terms of the new 

ones 
(c) express the vector 321 36 eeeu +−−=  in terms of the new set { }ie′  of basis 
vectors.  

2. Show that 
(a) the trace of a tensor A, iiA=Atr , is an invariant. 
(b) jiij aaT=⋅ aTa  is an invariant. 

3. Consider Problem 7 in §1.11.  Take the tensor FFU T=  with respect to the basis 
{ }in̂  and carry out a coordinate transformation of its tensor components so that it is 
given with respect to the original { }ie  basis – in which case the matrix representation 
for U given in Problem 7, §1.11, should be obtained. 
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1.14 Tensor Calculus I: Tensor Fields 
 
In this section, the concepts from the calculus of vectors are generalised to the calculus of 
higher-order tensors. 
 
 
1.14.1 Tensor-valued Functions 
 
Tensor-valued functions of a scalar 
 
The most basic type of calculus is that of tensor-valued functions of a scalar, for example 
the time-dependent stress at a point, )(tSS  .  If a tensor T depends on a scalar t, then 
the derivative is defined in the usual way, 
 

t

ttt

dt

d
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)()(
lim 0

TTT
, 

 
which turns out to be 
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ij

dt

dT
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d
ee

T
     (1.14.1) 

 
The derivative is also a tensor and the usual rules of differentiation apply, 
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For example, consider the time derivative of TQQ , where Q is orthogonal.  By the 

product rule, using IQQ T , 
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Thus, using Eqn. 1.10.3e 
 

 TTTT QQQQQQ         (1.14.2) 
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which shows that TQQ  is a skew-symmetric tensor. 
 
 
1.14.2 Vector Fields 
 
The gradient of a scalar field and the divergence and curl of vector fields have been seen 
in §1.6.  Other important quantities are the gradient of vectors and higher order tensors 
and the divergence of higher order tensors.  First, the gradient of a vector field is 
introduced.  
 
The Gradient of a Vector Field 
 
The gradient of a vector field is defined to be the second-order tensor 
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x
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grad    Gradient of a Vector Field      (1.14.3) 

 
In matrix notation, 
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a                             (1.14.4) 

 
One then has 
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j
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   (1.14.5) 

 
which is analogous to Eqn 1.6.10 for the gradient of a scalar field.  As with the gradient 
of a scalar field, if one writes xd  as exd , where e is a unit vector, then 

 

direction in  

grad
e

a
ea 








dx

d
      (1.14.6) 

 
Thus the gradient of a vector field a is a second-order tensor which transforms a unit 
vector into a vector describing the gradient of a in that direction. 
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As an example, consider a space curve parameterised by s, with unit tangent vector 
/d dsτ x  (see §1.6.2); one has 

 

  gradj
j j

j j j

dxd

ds x ds x x

   
          

a a a a
τ e e τ a τ . 

 
Although for a scalar field grad  is equivalent to  , note that the gradient defined in 
1.14.3 is not the same as a .  In fact, 
 

  aa gradT      (1.14.7) 
 

since 
 

ji
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j
jj

i
i x

a
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x
eeeea 









    (1.14.8) 

 
These two different definitions of the gradient of a vector, jiji xa ee  /  and 

jiij xa ee  / , are both commonly used.  In what follows, they will be distinguished by 

labeling the former as agrad  (which will be called the gradient of a) and the latter as 
a . 

 
Note the following: 
 in much of the literature, a  is written in the contracted form a , but the more 

explicit version is used here. 
 some authors define the operation of   on a vector or tensor    not as in 1.14.8, but 

through     / i ix       e  so that  grad /i j i ja x     a a e e . 

 
Example (The Displacement Gradient) 
 
Consider a particle 0p  of a deforming body at position X (a vector) and a neighbouring 

point 0q  at position Xd  relative to 0p , Fig. 1.14.1.  As the material deforms, these two 

particles undergo displacements of, respectively, )(Xu  and )( XXu d .  The final 

positions of the particles are fp  and fq .  Then 

 

XuX

XuX

XuXXuXx

dd

dd

ddd

grad
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Figure 1.14.1: displacement of material particles 
 
Thus the gradient of the displacement field u encompasses the mapping of (infinitesimal) 
line elements in the undeformed body into line elements in the deformed body.  For 
example, suppose that 0, 32

2
21  uukXu .  Then 

 

212

2

2

000

000

020

grad eeu 




















 kX
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X

u

j

i  

 
A line element iidXd eX   at iiX eX   maps onto 

 
  

122

332211212

2

2

eX

eeeeeXx

dXkXd

dXdXdXkXdd




 

 
The deformation of a box is as shown in Fig. 1.14.2.  For example, the vector 2eX dd   

(defining the left-hand side of the box) maps onto 212 eex   dkd . 
 

 
 

Figure 1.14.2: deformation of a box 
 
Note that the map xX dd   does not specify where in space the line element moves to.  
It translates too according to uXx  . 

 ■  
 
 
The Divergence and Curl of a Vector Field 
 
The divergence and curl of vectors have been defined in §1.6.6, §1.6.8.  Now that the 
gradient of a vector has been introduced, one can re-define the divergence of a vector 
independent of any coordinate system: it is the scalar field given by the trace of the 
gradient {▲Problem 4},  

1X

2X
final

X

Xd

xd

)( XXu d

)(Xu
final 

initial 

0p

0q

fp

fq
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aIaaa  :grad)grad(trdiv  Divergence of a Vector Field   (1.14.9) 

 
Similarly, the curl of a can be defined to be the vector field given by twice the axial 
vector of the antisymmetric part of agrad . 
 
 
1.14.3 Tensor Fields 
 
A tensor-valued function of the position vector is called a tensor field, )(xkijT  .  

 
The Gradient of a Tensor Field 
 
The gradient of a second order tensor field T is defined in a manner analogous to that of 
the gradient of a vector, Eqn. 1.14.2.  It is the third-order tensor 
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grad    Gradient of a Tensor Field   (1.14.10) 

 
This differs from the quantity 
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               (1.14.11) 

 
The Divergence of a Tensor Field 
 
Analogous to the definition 1.14.9, the divergence of a second order tensor T is defined to 
be the vector 
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  Divergence of a Tensor  (1.14.12) 

 
One also has 
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kjjk

i
i x

T
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x
eeeeT









 )(               (1.14.13) 

 
so that 
 

Tdiv TT                (1.14.14) 
 
As with the gradient of a vector, both   ijij xT e /  and   ijji xT e /  are commonly used 

as definitions of the divergence of a tensor.  They are distinguished here by labelling the 
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former as Tdiv  (called here the divergence of T) and the latter as T .  Note that the 
operations Tdiv  and T  are equivalent for the case of T symmetric. 
 
The Laplacian of a scalar   is the scalar 2    , in component form 2 2/ ix   (see 

section 1.6.7).  Similarly, the Laplacian of a vector v is the vector 2 v v , in 
component form 2 2/i jv x  .  The Laplacian of a tensor T in component form is similarly 

2 2/ij kT x  , which can be defined as that tensor field which satisfies the relation 

 

   2 2   T v Tv  

 
for all constant vectors v. 
 
 
Note the following 
 some authors define the operation of   on a vector or tensor    not as in (1.14.13), 

but through     / i ix      e  so that  div /ij j iT x    T T e . 

 using the convention that the “dot” is omitted in the contraction of tensors, one should 
write T  for T , but the “dot” is retained here because of the familiarity of this latter 
notation from vector calculus. 

 another operator is the Hessian,  2 / i j i jx x     e e . 

 
Identities 
 
Here are some important identities involving the gradient, divergence and curl 
{▲Problem 5}: 
 

 
     

   
     uvvuuvvuvu

uvvuvu

uvvuvu

vvv

gradgraddivdivcurl

)div(graddiv

gradgradgrad

gradgradgrad
TT





 

               (1.14.15) 

 
 
   
 
      
  





gradgradgrad

graddivdiv

:graddivdiv

gradtrdivdiv

divgraddiv
T









AAA

BAABBA

BABAAB

vAAvAv

AAA

                            (1.11.16) 

 
Note also the following identities, which involve the Laplacian of both vectors and 
scalars: 
 

 
  uuu

vuvuvuvu
2

222

divgradcurlcurl

grad:grad2




                         (1.14.17) 
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1.14.4 Cylindrical and Spherical Coordinates 
 
Cylindrical and spherical coordinates were introduced in §1.6.10 and the gradient and 
Laplacian of a scalar field and the divergence and curl of vector fields were derived in 
terms of these coordinates.  The calculus of higher order tensors can also be cast in terms 
of these coordinates. 
 
For example, from 1.6.30, the gradient of a vector in cylindrical coordinates is 

 Tgrad uu   with 
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         (1.14.18) 

 
and from 1.6.30, 1.14.12, the divergence of a tensor in cylindrical coordinates is 
{▲Problem 6} 
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         (1.14.19) 

 
 
1.14.5 The Divergence Theorem 
 
The divergence theorem 1.7.12 can be extended to the case of higher-order tensors.  
Consider an arbitrary differentiable tensor field ),( tT kij x  defined in some finite region of 

physical space.  Let S be a closed surface bounding a volume V in this space, and let the 
outward normal to S be n.  The divergence theorem of Gauss then states that 
 

 




V k
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S

kkij dV
x

T
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     (1.14.20) 

 
For a second order tensor, 
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V j
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S
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VS

dV
x

T
dSnTdVdS ,div TTn       (1.14.21) 

 
One then has the important identities {▲Problem 7} 
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)(div

grad
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TuTTnu
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    (1.14.22) 

 
 
1.14.6 Formal Treatment of Tensor Calculus 
 
Following on from §1.6.12, here a more formal treatment of the tensor calculus of fields 
is briefly presented. 
 
Vector Gradient 
 
What follows is completely analogous to Eqns. 1.6.46-49. 
 
A vector field VE 3:v  is differentiable at a point 3Ex  if there exists a second 
order tensor   ED xv  such that 
 

       hhxvxvhxv oD     for all   Eh                     (1.14.23) 

 
In that case, the tensor  xvD  is called the derivative (or gradient) of v at x (and is given 

the symbol  xv ). 
 
Setting wh   in 1.14.23, where Ew  is a unit vector, dividing through by   and 
taking the limit as 0 , one has the equivalent statement  
 

   wxvwxv 
 


0d

d
   for all   Ew                     (1.14.24) 

 
Using the chain rule as in §1.6.11, Eqn. 1.14.24 can be expressed in terms of the 
Cartesian basis  ie , 

 

    kkji
j

i
ik

k

i w
x

v
w

x

v
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                      (1.14.25) 

 
This must be true for all w and so, in a Cartesian basis,  
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  ji
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                                        (1.14.26) 

 
which is Eqn. 1.14.3. 
 
1.14.7 Problems 
 
1. Consider the vector field 3

2
22

2
31

2
1 eeev xxx  . (a) find the matrix representation of 

the gradient of v, (b) find the vector  vvgrad . 

2. If 312211321 eeeu xxxxxx  , determine u2 . 

3. Suppose that the displacement field is given by 1321 ,1,0 Xuuu  .  By using 

ugrad , sketch a few (undeformed) line elements of material and their positions in the 
deformed configuration. 

4. Use the matrix form of ugrad  and u  to show that the definitions 
(i)  )grad(trdiv aa                   

 (ii) ωa 2curl  , where ω  is the axial vector of the skew part of agrad  
agree with the definitions 1.6.17, 1.6.21 given for Cartesian coordinates. 

5. Prove the following: 
(i)    gradgradgrad  vvv  

(ii)       uvvuvu TT gradgradgrad   

(iii)     uvvuvu )div(graddiv   

(iv)      uvvuuvvuvu gradgraddivdivcurl   

(v)   AAA divgraddiv    

(vi)    vAAvAv gradtrdivdiv T   

(vii)   BABAAB :graddivdiv   

(viii)        graddivdiv BAABBA   

(ix)    gradgradgrad  AAA  
6. Derive Eqn. 1.14.19, the divergence of a tensor in cylindrical coordinates. 
7. Deduce the Divergence Theorem identities in 1.14.22 [Hint: write them in index 

notation.] 
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1.15 Tensor Calculus 2: Tensor Functions 
 
 
1.15.1 Vector-valued functions of a vector 
 
Consider a vector-valued function of a vector 
 

)(),( jii baa == baa  
 
This is a function of three independent variables 321 ,, bbb , and there are nine partial 
derivatives ji ba ∂∂ / .  The partial derivative of the vector  a with respect to b is defined to 
be a second-order tensor with these partial derivatives as its components: 
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It follows from this that   
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To show this, with )(),( jiijii abbbaa == , note that the differential can be written as 
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Since 321 ,, dadada  are independent, one may set 032 == dada , so that 
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Similarly, the terms inside the other brackets are zero and, in this way, one finds Eqn. 
1.15.2. 
  
 
1.15.2 Scalar-valued functions of a tensor 
 
Consider a scalar valued function of a (second-order) tensor 
 

jiijT eeTT ⊗== ),(φφ . 
This is a function of nine independent variables, )( ijTφφ = , so there are nine different 
partial derivatives: 
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The partial derivative of φ  with respect to T is defined to be a second-order tensor with 
these partial derivatives as its components: 
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   Partial Derivative with respect to a Tensor    (1.15.3) 

 
The quantity TT ∂∂ /)(φ  is also called the gradient of φ  with respect to T. 
 
Thus differentiation with respect to a second-order tensor raises the order by 2.  This 
agrees with the idea of the gradient of a scalar field where differentiation with respect to a 
vector raises the order by 1. 
 
Derivatives of the Trace and Invariants 
 
Consider now the trace: the derivative of Atr , with respect to A can be evaluated as 
follows:  
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Similarly, one finds that {▲Problem 1} 
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Derivatives of Trace Functions 
 

From these and 1.11.17, one can evaluate the derivatives of the invariants {▲Problem 2}: 
 

( ) TT2T

T

IIIIIIIII

III

I

−=+−=
∂
∂

−=
∂
∂

=
∂
∂

AIAA
A

AI
A

I
A

AAA
A

A
A

A
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Derivative of the Determinant 
 
An important relation is 
 

( ) ( ) Tdetdet −=
∂
∂ AAA
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        (1.15.7) 

 
which follows directly from 1.15.6c.  
 
Other Relations 
 
The total differential can be written as 
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This total differential gives an approximation to the total increment in φ  when the 
increments of the independent variables ,11T  are small. 
 
The second partial derivative is defined similarly: 
 

2 2

i j p q
ij pqT T
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the result being in this case a fourth-order tensor. 
 
Consider a scalar-valued function of a tensor, )(Aφ , but now suppose that the 
components of A depend upon some scalar parameter t: ))(( tAφφ = .  By means of the 
chain rule of differentiation, 
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which in symbolic notation reads (see Eqn. 1.10.10e) 
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Identities for Scalar-valued functions of Symmetric Tensor Functions 
 
Let C be a symmetric tensor, TCC = .  Then the partial derivative of ( ))(TCφφ =  with 
respect to T can be written as {▲Problem 3} 
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Scalar-valued functions of a Symmetric Tensor 
 
Consider the expression 
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If A is a symmetric tensor, there are a number of ways to consider this expression: two 
possibilities are that φ  can be considered to be 

(i) a symmetric function of the 9 variables ijA  

(ii) a function of 6 independent variables: ( )332322131211 ,,,,, AAAAAAφφ =  
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Looking at (i) and writing ( ) ( )( ) ,,,, 1221121211 AAAAAφφ = , one has, for example,  
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the last equality following from the fact that φ  is a symmetrical function of the ijA . 
 
Thus, depending on how the scalar function is presented, one could write 
 

(i)  etc.,,,
13

13
12

12
11

11 A
B

A
B

A
B

∂
∂

=
∂
∂

=
∂
∂

=
φφφ  

(ii)  etc.,
2
1,

2
1,

13
13

12
12

11
11 A

B
A

B
A

B
∂
∂

=
∂
∂

=
∂
∂

=
φφφ  

 
 
 



Section 1.15 

Solid Mechanics Part III                                                                                Kelly 128 

1.15.3 Tensor-valued functions of a tensor 
 
The derivative of a (second-order) tensor A with respect to another tensor B is defined as 
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and forms therefore a fourth-order tensor.  The total differential Ad  can in this case be 
written as 
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lkji
kl

ij

A
A

eeee
A
A

⊗⊗⊗
∂

∂
=

∂
∂  

 
The components of the tensor are independent, so 
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and so 
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the fourth-order identity tensor of Eqn. 1.12.4. 
 
Example 
 
Consider the scalar-valued function φ  of the tensor A and vector v (the “dot” can be 
omitted from the following and similar expressions), 
 

( ) AvvvA ⋅=,φ  
 
The gradient of φ  with respect to v is 
 

( )vAAvAAv
v
vAvAv

v
v

v
T+=+=

∂
∂

⋅+⋅
∂
∂

=
∂
∂φ  

 
On the other hand, the gradient of φ  with respect to A is 
 

vvvvv
A
Av

A
⊗=⋅=

∂
∂
⋅=

∂
∂ Iφ  
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■  
 
Consider now the derivative of the inverse, AA ∂∂ − /1 .  One can differentiate 0AA =−1  
using the product rule to arrive at 
 

A
AAA

A
A

∂
∂

−=
∂
∂ −

−
1

1

 

 
One needs to be careful with derivatives because of the position of the indices in 1.15.14); 
it looks like a post-operation of both sides with the inverse leads to 

( ) lkjijlik AA eeeeAAAAAA ⊗⊗⊗−=∂∂−=∂∂ −−−−− 11111 // .  However, this is not correct 
(unless A is symmetric).  Using the index notation (there is no clear symbolic notation), 
one has 
 

( )

( )lkjijlik
kl

ij

jnjlmkimmn
kl

im

jn
kl

mj
imjnmj

kl

im

lkji
kl

mj
immj

kl

im

AA
A
A

AA
A
A

A
A
A

AAA
A
A

A
A

AA
A
A

eeee

eeee

⊗⊗⊗−=
∂

∂
→

−=
∂
∂

→

∂

∂
−=

∂
∂

→

⊗⊗⊗
∂

∂
−=

∂
∂

−−
−

−−
−

−−−
−

−
−

11
1

11
1

111
1

1
1

δδδ
  (1.15.18) 

■  
 
 
1.15.4 The Directional Derivative 
 
The directional derivative was introduced in §1.6.11.  The ideas introduced there can be 
extended to tensors.  For example, the directional derivative of the trace of a tensor A, in 
the direction of a tensor T, is 
 

( ) ( ) ( ) TTATATAA trtrtrtr][tr
00

=+=+=∂
==

ε
ε

ε
ε εε d

d
d
d            (1.15.19) 

 
As a further example, consider the scalar function AvuA ⋅=)(φ , where u and v are 
constant vectors.  Then 
 

 ( ) ( )[ ] TvuvTAuTvuAA ⋅=+⋅=∂
=

ε
ε

φ
ε 0

][,,
d
d                  (1.15.20) 

 
Also, the gradient of φ  with respect to A is 
 

( ) vuAvu
AA

⊗=⋅
∂
∂

=
∂
∂φ                                   (1.15.21) 



Section 1.15 

Solid Mechanics Part III                                                                                Kelly 130 

 
and it can be seen that this is an example of the more general relation 
 

T
A

TA :][
∂
∂

=∂
φφ                                          (1.15.22) 

 
which is analogous to 1.6.41.  Indeed,  
 

w
u
vwv

T
A

T

w
x

w

u

A

x

∂
∂

=∂

∂
∂

=∂

⋅
∂
∂

=∂

][

:][

][

φφ

φφ

          (1.15.23) 

 
Example (the Directional Derivative of the Determinant) 
 
It was shown in §1.6.11 that the directional derivative of the determinant of the 22×  
matrix A, in the direction of a second matrix T, is  
 

( )[ ] 1221211211222211det TATATATA −−+=∂ TAA  
 
This can be seen to be equal to ( )TAA :det T− , which will now be proved more generally 
for tensors A and T: 
 

( ) ( )

( )[ ]

( )TAIA

TAIA

TATAA

1

0

1

0

0

detdet

det

det][det

−

=

−

=

=

+=

+=

+=∂

ε
ε

ε
ε

ε
ε

ε

ε

ε

d
d

d
d
d
d

 

 
The last line here follows from (1.10.16a).  Now the characteristic equation for a tensor B 
is given by (1.11.4, 1.11.5), 
 

( )( )( ) ( )IB λλλλλλλ −==−−− det0321  
 
where iλ  are the three eigenvalues of B.  Thus, setting 1−=λ  and TAB 1−= ε , 
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( ) ( )( )( )

( )( )( )
( )
( )TAA

A

A

ATA

TATATA

TATATA

TATATAA

1

321

321
0

321
0

trdet

det

111det

111det][det

111

111

111

−

=

=

=

++=

+++=

+++=∂

−−−

−−−

−−−

λλλ

λελελε
ε

λλλ
ε

ε

εεε
ε

d
d
d
d

 

 
and, from (1.10.10e),  
 

( ) ( )TAATAA :det][det T−=∂           (1.15.24) 
■  

 
Example (the Directional Derivative of a vector function) 
 
Consider the n homogeneous algebraic equations ( ) oxf = : 
 

( )
( )

( ) 0,,,

0,,,
0,,,

21

212

211

=

=
=

nn

n

n

xxxf

xxxf
xxxf






 

 
The directional derivative of f in the direction of some vector u is 
 

( )( ) ( )

( )

Ku

z
z
zf

uxzzfuxfx

=









∂
∂

=

+==∂

=

=

0

0

])[(

ε

ε

ε

εε
ε

d
d

d
d

    (1.15.25) 

 
where K, called the tangent matrix of the system, is 
 



















∂∂∂∂

∂∂∂∂∂∂
∂∂∂∂∂∂

=
∂
∂

=

nnn

n

n

xfxf

xfxfxf
xfxfxf

//

///
///

1

22212

12111






x
fK ,    ( )ufufx grad][ =∂  

 
which can be compared to (1.15.23c). 

■  
 
Properties of the Directional Derivative 
 
The directional derivative is a linear operator and so one can apply the usual product rule.  
For example, consider the directional derivative of 1−A  in the direction of T: 
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( ) ( ) 1

0

1 ][ −

=

− +=∂ TATAA ε
ε εd

d  

 
To evaluate this, note that ( ) ( ) 0TITAA AA =∂=∂ − ][][1 , since I is independent of A.  The 
product rule then gives ( ) ( ) ][][ 11 TAAATA AA ∂−=∂ −− , so that 
 

( ) 11111 ][][ −−−−− −=∂−=∂ TAAATAATA AA      (1.15.26) 
 
Another important property of the directional derivative is the chain rule, which can be 
applied when the function is of the form ( )( )xBfxf ˆ)( = .  To derive this rule, consider (see 
§1.6.11) 
 

][)()( ufxfuxf x∂+≈+ ,      (1.15.27) 
 
where terms of order )(uo  have been neglected, i.e. 
 

0)(lim 0 =→ u
u

u
o . 

 
The left-hand side of the previous expression can also be written as 
 

( )( ) ( )
( ) ( ) ]][[ˆ)(ˆ

][)(ˆˆ

uBBfxBf

uBxBfuxBf

xB

x

∂∂+≈

∂+≈+
 

 
Comparing these expressions, one arrives at the chain rule, 
 

( ) ]][[ˆ][ uBBfuf xBx ∂∂=∂    Chain Rule             (1.15.28) 
 
As an application of this rule, consider the directional derivative of 1det −A  in the 
direction T; here, f is 1det −A  and ( ))(ˆˆ ABff = .  Let 1−= AB  and Bf detˆ = .  Then, from 
Eqns. 1.15.24, 1.15.25, 1.10.3h, f, 
 

( ) ( )
( ) ( )( )

( )( )
( )TAA

TAAAA
TAABB

TABTA ABA

:det
:det

:det
]][[det][det

T1

11T1

11T

11

−−

−−−

−−−

−−

−=

−=

−=

∂∂=∂

        (1.15.29) 

 
 
1.15.5 Formal Treatment of Tensor Calculus 
 
Following on from §1.6.12 and §1.14.6, a scalar function RVf →2:  is differentiable at 

2V∈A  if there exists a second order tensor ( ) 2VDf ∈A  such that 
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( ) ( ) ( ) ( )HHAAHA oDfff ++=+ :    for all   2V∈H                (1.15.30) 

 
In that case, the tensor ( )ADf  is called the derivative of f at A.  It follows from this that 

( )ADf  is that tensor for which 
 

[ ] ( ) ( )BABABA ε
ε ε

+==∂
=

f
d
dDff

0

:     for all   2V∈B                    (1.15.31) 

 
For example, from 1.15.24, 
 

( ) ( ) ( ) TAATAATAA :det:det][det TT −− ==∂                   (1.15.32) 
 
from which it follows, from 1.15.31, that 

 
Tdetdet −=

∂
∂ AAA
A

                                            (1.15.33) 

 
which is 1.15.7. 
 
Similarly, a tensor-valued function 22: VV →T  is differentiable at 2V∈A  if there 
exists a fourth order tensor ( ) 4VD ∈AT  such that 
 

( ) ( ) ( ) ( )HHATATHAT oD ++=+    for all   2V∈H                (1.15.34) 
 
In that case, the tensor ( )ATD  is called the derivative of T at A.  It follows from this that 

( )ATD  is that tensor for which 
 

[ ] ( ) ( )BATBATBTA ε
ε ε

+==∂
=0

:
d
dD     for all   2V∈B              (1.15.35) 

 
 
1.15.6 Problems 
 
1. Evaluate the derivatives (use the chain rule for the last two of these) 

( ) ( ) ( ) ( )
A
A

A
A

A
A

A
A

∂
∂

∂
∂

∂
∂

∂
∂ 2232 )tr(,)tr(,tr,tr  

2. Derive the derivatives of the invariants, Eqn. 1.15.5.  [Hint: use the Cayley-Hamilton 
theorem, Eqn. 1.11.15, to express the derivative of the third invariant in terms of the 
third invariant.] 

3. (a) Consider the scalar valued function ( )( )FCφφ = , where FFC T= .  Use the chain 
rule 

ji
ij

mn

mn F
C

C
ee

F
⊗

∂
∂

∂
∂

=
∂
∂ φφ  

to show that 
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kj
ik

ij C
F

F ∂
∂

=
∂
∂

∂
∂

=
∂
∂ φφφφ 2,2

C
F

F
 

(b) Show also that 

U
CC

U
U ∂

∂
=

∂
∂

=
∂
∂ φφφ 22  

for UUC =  with U symmetric. 
[Hint: for (a), use the index notation: first evaluate ijmn FC ∂∂ /  using the product rule, 
then evaluate ijF∂∂ /φ  using the fact that C is symmetric.] 

4. Show that 

     (a) 11
1

: −−
−

−=
∂
∂ BAAB

A
A ,      (b) 111

1

: −−−
−

⊗−=⊗
∂
∂ AAAA

A
A  

5. Show that 
T

T

: BB
A

A
=

∂
∂  

6. By writing the norm of a tensor A , 1.10.14, where A is symmetric, in terms of the 
trace (see 1.10.10), show that 

A
A

A
A

=
∂

∂
 

7. Evaluate 
(i) ( ) ][2 TAA∂  
(ii) ( ) ][tr 2 TAA∂  (see 1.10.10e) 

8. Derive 1.15.29 by using the definition of the directional derivative and the relation 
1.15.7, ( ) ( ) Tdet/det −=∂∂ AAAA . 
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1.16 Curvilinear Coordinates 
 
 
1.16.1 The What and Why of Curvilinear Coordinate Systems 
 
Up until now, a rectangular Cartesian coordinate system has been used, and a set of 
orthogonal unit base vectors ie  has been employed as the basis for representation of 

vectors and tensors. More general coordinate systems, called curvilinear coordinate 
systems, can also be used. An example is shown in Fig. 1.16.1: a Cartesian system shown 
in Fig. 1.16.1a with basis vectors ie  and a curvilinear system is shown in Fig. 1.16.1b 

with basis vectors ig . Some important points are as follows: 

1. The Cartesian space can be generated from the coordinate axes ix ; the generated 

lines (the dotted lines in Fig. 1.16.1) are perpendicular to each other. The base 
vectors ie  lie along these lines (they are tangent to them). In a similar way, the 

curvilinear space is generated from coordinate curves i ; the base vectors ig  are 

tangent to these curves.  
2. The Cartesian base vectors ie  are orthogonal to each other and of unit size; in 

general, the basis vectors ig  are not orthogonal to each other and are not of unit size. 

3. The Cartesian basis is independent of position; the curvilinear basis changes from 
point to point in the space (the base vectors may change in orientation and/or 
magnitude). 

 

 
 

Figure 1.16.1: A Cartesian coordinate system and a curvilinear coordinate system 
 
An example of a curvilinear system is the commonly-used cylindrical coordinate system, 
shown in Fig. 1.16.2. Here, the curvilinear coordinates 1 2 3, ,    are the familiar , ,r z . 

This cylindrical system is itself a special case of curvilinear coordinates in that the base 
vectors are always orthogonal to each other. However, unlike the Cartesian system, the 
orientations of the 1 2,g g   ,r   base vectors change as one moves about the cylinder axis. 

  

1x

2x


2e

1e
1g

2g

1

2
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Figure 1.16.2: Cylindrical Coordinates 
 
The question arises: why would one want to use a curvilinear system? There are two main 
reasons: 
1. The problem domain might be of a particular shape, for example a spherical cell, or a 

soil specimen that is roughly cylindrical. In that case, it is often easier to solve the 
problems posed by first describing the problem geometry in terms of a curvilinear, 
e.g. spherical or cylindrical, coordinate system. 

2. It may be easier to solve the problem using a Cartesian coordinate system, but a 
description of the problem in terms of a curvilinear coordinate system allows one to 
see aspects of the problem which are not obvious in the Cartesian system: it allows 
for a deeper understanding of the problem. 

 
To give an idea of what is meant by the second point here, consider a simple mechanical 
deformation of a “square” into a “parallelogram”, as shown in Figure 1.16.3. This can be 
viewed as a deformation of the actual coordinate system, from the Cartesian system 
aligned with the square, to the “curved” system (actually straight lines, but now not 
perpendicular) aligned with the edges of the parallelogram. The relationship between the 
sets of base vectors, the ie  and the ig , is intimately connected to the actual physical 

deformation taking place. In our study of curvilinear coordinates, we will examine this 
relationship, and also the relationship between the Cartesian coordinates ix  and the 

curvilinear coordinates i , and this will give us a very deep knowledge of the essence of 

the deformation which is taking place. This notion will become more clear when we look 
at kinematics, convected coordinates and related topics in the next chapter. 
 

 
 

Figure 1.16.3: Deformation of a Square into a Parallelogram 
 
 
1.16.2 Vectors in Curvilinear Coordinates 
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1
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The description of scalars in curvilinear coordinates is no different to that in Cartesian 
coordinates, as they are independent of the basis used. However, the description of 
vectors is not so straightforward, or obvious, and it will be useful here to work carefully 
through an example two dimensional problem: consider again the Cartesian coordinate 
system and the oblique coordinate system (which delineates a “parallelogram”-type 
space), Fig. 1.16.4. These systems have, respectively, base vectors ie  and ig , and 

coordinates ix  and i . (We will take the ig  to be of unit size for the purposes of this 

example.) The base vector 2g  makes an angle   with the horizontal, as shown. 

 

 
 

Figure 1.16.4: A Cartesian coordinate system and an oblique coordinate system 
 
Let a vector v have Cartesian components ,x yv v , so that it can be described in the 

Cartesian coordinate system by 
 

1 2x yv v v e e                  (1.16.1) 

 
Let the same vector v have components 1 2,v v (the reason for using superscripts, when we 
have always used subscripts hitherto, will become clearer below), so that it can be 
described in the oblique coordinate system by 
 

1 2
1 2v v v g g     (1.16.2) 

 
Using some trigonometry, one can see that these components are related through 
 

1

2

1

tan
1

sin

x y

y

v v v

v v





 

 
                          (1.16.3) 

 
Now we come to a very important issue: in our work on vector and tensor analysis thus 
far, a number of important and useful “rules” and relations have been derived. These rules 
have been independent of the coordinate system used. One example is that the magnitude 

of a vector v is given by the square root of the dot product: 
2  v v v . A natural question 

to ask is: does this rule work for our oblique coordinate system? To see, first let us 
evaluate the length squared directly from the Cartesian system: 

1x

2x

1
1e

2e

1g

2g

2

yv

xv 1v

2v
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2 2 2

x yv v   v v v                             (1.16.4) 

 
Following the same logic, we can evaluate 
 

   
2 2

2 21 2

2 2
2 2

1 1

tan sin

1 1 1
2

tan tan sin

x y y

x x y y

v v v v v

v v v v

 

  

         
   

     
 

        (1.16.5) 

 
It is clear from this calculation that our “sum of the squares of the vector components” 
rule which worked in Cartesian coordinates does not now give us the square of the vector 
length in curvilinear coordinates. 
 
To find the general rule which works in both (all) coordinate systems, we have to 
complicate matters somewhat: introduce a second set of base vectors into our oblique 
system. The first set of base vectors, the 1g  and 2g  aligned with the coordinate directions 

1  and 2  of Fig. 1.16.4, are termed covariant base vectors. Our second set of vectors, 

which will be termed contravariant base vectors, will be denoted by superscripts: 1g  and 
2g , and will be aligned with a new set of coordinate directions, 1  and 2 . 

 

The new set is defined as follows: the base vector 1g  is perpendicular to 2g   1
2 0 g g  , 

and the base vector 2g  is perpendicular to 1g   2
1 0 g g , Fig. 1.16.5a. (The base 

vectors’ orientation with respect to each other follows the “right-hand rule” familiar with 
Cartesian bases; this will be discussed further below when the general 3D case is 
examined.) Further, we ensure that  
 

1 2
1 21, 1   g g g g                              (1.16.6) 

 
With 1 1 2 1 2, cos sin   g e g e e , these conditions lead to 

 
1 2

1 2 2

1 1
,

tan sin 
  g e e g e                         (1.16.7) 

 

and 1 2 1 / sin g g . 

 
A good trick for remembering which are the covariant and which are the contravariant is 
that the third letter of the word tells us whether the word is associated with subscripts or 
with superscripts. In “covariant”, the “v” is pointing down, so we use subscripts; for 
“contravariant”, the “n” is (with a bit of imagination) pointing up, so we use superscripts. 
 
Let the components of the vector v using this new contravariant basis be 1v  and 2v , Fig. 

1.16.5b, so that 
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1 2
1 2v v v g g               (1.16.8) 

 
Note the positon of the subscripts and superscripts in this expression: when the base 
vectors are contravariant (“superscripts”), the associated vector components are covariant 
(“subscripts”); compare this with the alternative expression for v using the covariant 
basis, Eqn. 1.16.2, 1 2

1 2v v v g g , which has covariant base vectors and contravariant 

vector components. 
 
When v is written with covariant components, Eqn. 1.16.8, it is called a covariant vector.  
When v is written with contravariant components, Eqn. 1.16.2, it is called a 
contravariant vector. This is not the best of terminology, since it gives the impression 
that the vector is intrinsically covariant or contravariant, when it is in fact only a matter of 
which base vectors are being used to describe the vector. For this reason, this terminology 
will be avoided in what follows. 
 

Examining Fig. 1.16.5b, one can see that 1
1 / sinxv v g  and 2

2 / tanx yv v v g , so 

that 
 

1

2 cos sin
x

x y

v v

v v v 


 
                             (1.16.9) 

 

 
 

Figure 1.16.5: 2 sets of basis vectors; (a) covariant and contravariant base vectors, 
(b) covariant and contravariant components of a vector 

 
 
Now one can evaluate the quantity 

 

   1 2
1 2

2 2

1 1
cos sin

tan sinx x y x y y

x y

v v v v v v v v v v

v v

 
 

          
   

 
   (1.16.10) 

 
Thus multiplying the covariant and contravariant components together gives the length 
squared of the vector; this had to be so given how we earlier defined the two sets of base 
vectors: 
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2 1 2 1 2
1 2 1 2

1 1 2 2 2 1 1 2
1 1 2 2 1 2 2 1

1 2
1 2

v v v v

v v v v v v v v

v v v v

     

       

 

v v v g g g g

g g g g g g g g       (1.16.11) 

 
In general, the dot product of two vectors u and v in the general curvilinear coordinate 
system is defined through (the fact that the latter equality holds is another consequence of 
our choice of base vectors, as can be seen by re-doing the calculation of Eqn. 1.16.11 with 
2 different vectors, and their different, covariant and contravariant, representations) 
 

1 2 1 2
1 2 1 2u v u v u v u v    u v                      (1.16.12) 

 
 
Cartesian Coordinates as Curvilinear Coordinates 
 
The Cartesian coordinate system is a special case of the more general curvilinear 
coordinate system, where the covariant and contravariant bases are identically the same 
and the covariant and contravariant components of a vector are identically the same, so 
that one does not have to bother with carefully keeping track of whether an index is 
subscript or superscript – we just use subscripts for everything because it is easier. 
 
More formally, in our two-dimensional space, our covariant base vectors are 

1 1 2 2, g e g e . With the contravariant base vectors orthogonal to these, 1
2 0 g g , 

2
1 0 g g , and with Eqn. 1.16.6, 1 2

1 21, 1   g g g g , the contravariant basis is 
1 2

1 2, g e g e . A vector v can then be represented as 

 
1 2 1 2

1 2 1 2v v v v   v g g g g                                    (1.16.13) 

 
which is nothing other than 1 1 2 2v v v e e , with 1 2

1 2,v v v v  . The dot product is, 

formally,  
 

1 2 1 2
1 2 1 2u v u v u v u v    u v                     (1.16.14) 

 
which we choose to write as the equivalent 1 1 2 2u v u v  u v . 

 
 
1.16.3 General Curvilinear Coordinates 
 
We now define more generally the concepts discussed above. 
 
A Cartesian coordinate system is defined by the fixed base vectors 321 ,, eee  and the 

coordinates ),,( 321 xxx , and any point p in space is then determined by the position 
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vector i
ix ex   (see Fig. 1.16.6) 1.  This can be expressed in terms of curvilinear 

coordinates ),,( 321   by the transformation (and inverse transformation) 
 

 
),,(

,,
321

321




ii

ii

xx

xxx
      (1.16.15) 

 
For example, the transformation equations for the oblique coordinate system of Fig. 
1.16.4 are 
 

1 1 2 2 2 3 3

1 1 2 2 2 3 3

1 1
, ,

tan sin

cos , sin ,

x x x x

x x x

 
 

      

       
                           (1.16.16) 

 
If 1  is varied while holding 2  and 3  constant, a space curve is generated called a 

1  coordinate curve.  Similarly, 2  and 3  coordinate curves may be generated.  
Three coordinate surfaces intersect in pairs along the coordinate curves.  On each 
surface, one of the curvilinear coordinates is constant. 
 

 
 

Figure 1.16.6: curvilinear coordinate system and coordinate curves 
 
 
In order to be able to solve for the i  given the ix , and to solve for the ix  given the i , 
it is necessary and sufficient that the following determinants are non-zero – see Appendix 
1.B.2 (the first here is termed the Jacobian J of the transformation): 
 

                                                 
1 superscripts are used for the Cartesian system here and in much of what follows for notational consistency 
(see later) 

x

1x

2x

3x
const3 

1g

2g

3g

1e 2e

3e curve1 

curve2 

curve3 

p

1g



Section 1.16 

Solid Mechanics Part III                                                                                Kelly 142

Jxx

xx
J

j

i

j

i

j

i

j

i 1
det,det 





























 ,                 (1.16.17) 

 
the last equality following from (1.15.2, 1.10.18d). 
 
Clearly Eqns 1.16.15a can be inverted to get Eqn. 1.16.15b, and vice versa, but just to be 
sure, we can check that the Jacobian and inverse are non-zero: 
 

1
tan

1
sin

1 cos 0 1 0
1 1

0 sin 0 sin , 0 0
sin

0 0 1 0 0 1

J
J






 




    ,        (1.16.18) 

 
The Jacobian is zero, i.e. the transformation is singular, only when 0  , i.e. when the 
parallelogram is shrunk down to a line. 
 
 
1.16.4 Base Vectors in the Moving Frame 
 
Covariant Base Vectors 
 
From §1.6.2, writing  i xx , tangent vectors to the coordinate curves at x are given 
by2 
 

mi

m

ii

x
e

x
g








      Covariant Base Vectors    (1.16.19) 

 
with inverse   m

im
i x ge  / .  The ig  emanate from the point p and are directed 

towards the site of increasing coordinate i .  They are called covariant base vectors. 
Increments in the two coordinate systems are related through 
 

i
i

i
i

dd
d

d 


 g
x

x  

  
Note that the triple scalar product  321 ggg  , Eqns. 1.3.17-18, is equivalent to the 

determinant in 1.16.17, 
 

 
     
     
     













j

ix
J det

332313

322212

312111

321

ggg

ggg

ggg

ggg         (1.16.20) 

 

                                                 
2 in the Cartesian system, with the coordinate curves parallel to the coordinate axes, these equations reduce 

trivially to   mmim
im

i xx eee  /  
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so that the condition that the determinant does not vanish is equivalent to the condition 
that the vectors ig  are linearly independent, and so the ig  can form a basis.   

 
For example, from Eqns. 1.16.16b, the covariant base vectors for the oblique coordinate 
system of Fig. 1.16.4, are 
 

1 2 3

1 1 2 3 11 1 1

1 2 3

2 1 2 3 1 22 2 2

1 2 3

3 1 2 3 33 3 3

cos sin

x x x

x x x

x x x

 

  
   
  
  

    
  
  

   
  

g e e e e

g e e e e e

g e e e e

                 (1.16.21) 

 
 
Contravariant Base Vectors 
 
Unlike in Cartesian coordinates, where ijji ee , the covariant base vectors do not 

necessarily form an orthonormal basis, and ijji gg .  As discussed earlier, in order to 

deal with this complication, a second set of base vectors are introduced, which are defined 
as follows: introduce three contravariant base vectors ig  such that each vector is 
normal to one of the three coordinate surfaces through the point p.  From §1.6.4, the 

normal to the coordinate surface  1 1 2 3, , constx x x   is given by the gradient vector 
1grad , with Cartesian representation 

 

m
mx

e




1

1grad                                              (1.16.22) 

 
and, in general, one may define the contravariant base vectors through 
 

m
m

i
i

x
eg




      Contravariant Base Vectors        (1.16.23) 

 
The contravariant base vector 1g  is shown in Fig. 1.16.6. 
 
As with the covariant base vectors, the triple scalar product  321 ggg   is equivalent to 
the determinant in 1.16.17, 
 

 
     
     
     













i

j

xJ
det

1

3
3

2
3

1
3

3
2

2
2

1
2

3
1

2
1

1
1

321

ggg

ggg

ggg

ggg         (1.16.24) 

 
and again the condition that the determinant does not vanish is equivalent to the condition 
that the vectors ig  are linearly independent, and so the contravariant vectors also form a 
basis. 
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From Eqns. 1.16.16a, the contravariant base vectors for the oblique coordinate system are 
 

1 1 1
1

1 2 3 1 21 2 3

2 2 2
2

1 2 3 21 2 3

3 3 3
3

1 2 3 31 2 3

1

tan

1

sin

x x x

x x x

x x x





  
    
  
  

   
  
  

   
  

g e e e e e

g e e e e

g e e e e

                 (1.16.25) 

 
 
1.16.5 Metric Coefficients 
 
It follows from the definitions of the covariant and contravariant vectors that {▲Problem 
1} 
 

i
jj

i gg      (1.16.26) 

 
This relation implies that each base vector ig  is orthogonal to two of the reciprocal base 

vectors ig .  For example, 1g  is orthogonal to both 2g  and 3g .  Eqn. 1.16.26 is the 

defining relationship between reciprocal pairs of general bases.  Of course the ig  were 

chosen precisely because they satisfy this relation.  Here, j
i  is again the Kronecker 

delta3, with a value of 1 when ji   and zero otherwise. 
 
One needs to be careful to distinguish between subscripts and superscripts when dealing 
with arbitrary bases, but the rules to follow are straightforward.  For example, each free 
index which is not summed over, such as i or j in 1.16.26, must be either a subscript or 
superscript on both sides of an equation.  Hence the new notation for the Kronecker delta 
symbol. 
 
Unlike the orthogonal base vectors, the dot product of a covariant/contravariant base 
vector with another base vector is not necessarily one or zero.  Because of their 
importance in curvilinear coordinate systems, the dot products are given a special symbol: 
define the metric coefficients to be 
 

jiij

jiij

g

g

gg

gg




     Metric Coefficients  (1.16.27) 

 
For example, the metric coefficients for the oblique coordinate system of Fig. 1.16.4 are 
 

11 12 21 22

11 12 21 22
2 2 2

1, cos , 1

1 cos 1
, ,

sin sin sin

g g g g

g g g g




  

   

    
              (1.16.28) 

                                                 
3 although in this context it is called the mixed Kronecker delta 
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The following important and useful relations may be derived by manipulating the 
equations already introduced: {▲Problem 2} 
 

j
iji

j
iji

g

g

gg

gg




     (1.16.29) 

 
and {▲Problem 3} 

 
i
k

i
kkj

ij ggg       (1.16.30) 

 
Note here another rule about indices in equations involving general bases: summation can 
only take place over a dummy index if one is a subscript and the other is a superscript – 
they are paired off as with the j’s in these equations. 
 
The metric coefficients can be written explicitly in terms of the curvilinear components: 
 

k

j

k

i
jiij

j

k

i

k

jiij xx
g

xx
g














 gggg ,      (1.16.31) 

 
Note here also a rule regarding derivatives with general bases: the index i on the right 
hand side of 1.16.31a is a superscript of   but it is in the denominator of a quotient and 
so is regarded as a subscript to the entire symbol, matching the subscript i on the g on the 
left hand side 4. 
 
One can also write 1.16.31 in the matrix form 
 

   
TT

, 












































k

j

k

i
ij

j

k

i

k

ij xx
g

xx
g               (1.16.32) 

 
and, from 1.10.16a,b, 
 

   
2

2

2

2

1
detdet,detdet

Jx
gJ

x
g

j

i
ij

j

i

ij 





































    (1.16.33) 

 
These determinants play an important role, and are denoted by g: 
 

1
det ,

det
ij ij

g g g J
g

       
            (1.16.34) 

 
Note: 

 The matrix  ikx  /  is called the Jacobian matrix J, so  ijgJJ T  

 

                                                 
4 the rule for pairing off indices has been broken in Eqn. 1.16.31 for clarity; more precisely, these equations 

should be written as    mn
jnim

ij xxg  //  and    mnnjmiij xxg  //  
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1.16.6 Scale Factors 
 
The covariant and contravariant base vectors are not necessarily unit vectors. the unit 

vectors are, with , i i i
i i i   g g g g g g , : 

  

ˆ ˆ,
i i

ii i
i i ii

i iig g
   

g g g g
g g

g g
     (no sum)                (1.16.35) 

 
The lengths of the covariant base vectors are denoted by h and are called the scale 
factors: 
 

iiii gh  g      (no sum)              (1.16.36) 

 
 
1.16.7 Line Elements and The Metric 
 
Consider a differential line element, Fig. 1.16.7, 
 

i
i

i
i ddxd gex           (1.16.37) 

 

The square of the length of this line element, denoted by  2s  and called the metric of 
the space, is then 
 

      ji
ijj

j
i

i ddgdddds  ggxx2   (1.16.38) 

 

This relation   ji
ij ddgs  2  is called the fundamental differential quadratic form.  

The sgij '  can be regarded as a set of scale factors for converting increments in i  to 

changes in length. 

 
 

Figure 1.16.7: a line element in space 
 
For a two dimensional space,  

x

1x
2x

3x

1
1gd

3
3gd

curve1 

curve2 

curve3 

xd 2
2gd
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2 1 1 1 2 2 1 2 2
11 12 21 22

2 21 1 2 2
11 12 222

s g d d g d d g d d g d d

g d g d d g d

            

      
            (1.16.39) 

 
so that, for the oblique coordinate system of Fig. 1.16.4, from 1.16.28, 
 

     2 22 1 1 2 22coss d d d d                                (1.16.40) 

 
This relation can be verified by applying Pythagoras’ theorem to the geometry of Figure 
1.16.8. 
 

 
 

Figure 1.16.8: Length of a line element 
 
 
1.16.8 Line, Surface and Volume Elements 
 
Here we list expressions for the area of a surface element S  and the volume of a volume 
element V , in terms of the increments in the curvilinear coordinates 321 ,,  . 
These are particularly useful for the evaluation of surface and volume integrals in 
curvlinear coordinates.  
 
Surface Area and Volume Elements 
 
The surface area 1S  of a face of the elemental parallelepiped on which 1  is constant 

(to which 1g  is normal) is, using 1.7.6, 
 

   
     

3211

322
233322

32
32323322

32
3232

32
32

3
3

2
2

1

)(

)()(













gg

ggg

S

gggggggg

gggg

gg

gg

         (1.16.41) 

 
and similarly for the other surfaces. For a two dimensional space, one has 

1
1g

2g

2



ds
2d

1d

2sin d 

2cos d 
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1 2
1 2

2 1 2
11 22 12

1 2 1 2

( ) ( )

( )

S

g g g

g J

    

   

     

g g

                       (1.16.42) 

 
 
The volume V  of the parallelepiped involves the triple scalar product 1.16.20: 
 

   1 2 3 1 2 3 1 2 3
1 2 3V g J              g g g      (1.16.43) 

 
 
1.16.9 Orthogonal Curvilinear Coordinates 
 
In the special case of orthogonal curvilinear coordinates, one has 
 

 

















2
3

2
2

2
1

00

00

00

,

h

h

h

ghhg ijjiijjiijjiij  gggg   (1.16.44) 

 
The contravariant base vectors are collinear with the covariant, but the vectors are of 
different magnitudes: 
 

i
i

i
iii h

h gggg ˆ
1

,ˆ                   (1.16.45) 

 
It follows that 
 

 

321321

21213

13132

32321

2
3

2
3

2
2

2
2

2
1

2
1

2









hhhV

hhS

hhS

hhS

dhdhdhs

       (1.16.46) 

 
Examples 
 
1. Cylindrical Coordinates 
 
Consider the cylindrical coordinates,    321 ,,,, zr  , cf. §1.6.10, Fig. 1.16.9: 
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33

212

211

sin

cos







x

x

x

, 

   
 

33

1212

22211

/tan

x

xx

xx






  

 
with  
 

 321 ,20,0   
 

 
 

Figure 1.16.9: Cylindrical Coordinates 
 
From Eqns. 1.16.19 (compare with 1.6.29), 1.16.27, 
 

2 2
1 1 2

1 2 1 2
2 1 2

3 3

cos sin

sin cos

    

    


g e e

g e e

g e

,           21

1 0 0

0 0

0 0 1

ijg

 
 

  
 
  

 

 
and, from 1.16.17, 
 

1det 











j

ix
J  

 
so that there is a one-to-one correspondence between the Cartesian and cylindrical 
coordinates at all point except for 01   (which corresponds to the axis of the cylinder).  
These points are called singular points of the transformation. The unit vectors and scale 
factors are {▲Problem 11} 
 

   
   
   z

r

h

rh

h

eggg

e
g

gg

eggg










3333

1
2

2
1

22

1111

ˆ11

ˆ

ˆ11

  

 
The line, surface and volume elements are 
 

Metric:             2 2 22 21 1 2 3 2 2s d d d dr rd dz            

1x

2x

3x



1
1e


3e

2e

3g

1g

2g

2

3
curve1 

curve2 

curve3 



Section 1.16 

Solid Mechanics Part III                                                                                Kelly 150

Surface Element: 
211

3

13
2

321
1







S

S

S

 

Volume Element:  zrrV  3211  
 
 
2. Spherical Coordinates 
 
Consider the spherical coordinates,    321 ,,,, r , cf. §1.6.10, Fig. 1.16.10: 
 

213

3212

3211

cos

sinsin

cossin







x

x

x

, 

     
     

    21221
3

2322211
2

232221
1

/tan

/tan

xx

xxx

xxx













 



 

 
with  
 

 20,0,0 32
1   

 

 
 

Figure 1.16.10: Spherical Coordinates 
 
From Eqns. 1.16.19 (compare with 1.6.36), 1.16.27, 
 

 
 

2 3 2 3 2
1 1 2 3

1 2 3 2 3 2
2 1 2 3

1 2 3 3
3 1 2

sin cos sin sin cos

cos cos cos sin sin

sin sin cos

        

         

      

g e e e

g e e e

g e e

,    
 

21

21 2

1 0 0

0 0

0 0 sin

ijg

 
 
   
    

 

 
and, from 1.16.17, 
 

  221 sindet 











j

ix
J      

 
so that there is a one-to-one correspondence between the Cartesian and spherical 
coordinates at all point except for the singular points along the 3x  axis. 



1g

1x

2x

3x
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1

2
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The unit vectors and scale factors are {▲Problem 11} 
 

   
   

   



 e
g

gg

e
g

gg

eggg













21
3

3
21

33

1
2

2
1

22

1111

sin
ˆsinsin

ˆ

ˆ11

rh

rh

h r

 

 
The line, surface and volume elements are 
 

Metric:   
       

    222

2321221212

sin

sin

 drrddr

ddds




 

Surface Element: 

 

211
3

1321
2

32221
1

sin

sin







S

S

S

 

Volume Element:      rrV sinsin 2321221  
 
 
1.16.10 Vectors in Curvilinear Coordinates 
 
A vector can now be represented in terms of either basis: 
 

    i
ii

i uu ggu 321321 ,,,,        (1.16.47) 

 
The iu  are the covariant components of u and iu  are the contravariant components of 

u.  Thus the covariant components are the coefficients of the contravariant base vectors 
and vice versa – subscripts denote covariance while superscripts denote contravariance. 
 
Analogous to the orthonormal case, where ii ueu  {▲Problem 4}: 

 
ii

ii uu  gugu ,       (1.16.48) 

 
Note the following useful formula involving the metric coefficients, for raising or 
lowering the index on a vector component, relating the covariant and contravariant 
components, {▲Problem 5} 
 

j
ijij

iji uguugu  ,       (1.16.49) 

 
Physical Components of a Vector 
 
The contravariant and covariant components of a vector do not have the same physical 
significance in a curvilinear coordinate system as they do in a rectangular Cartesian 
system; in fact, they often have different dimensions.  For example, the differential xd  of 
the position vector has in cylindrical coordinates the contravariant components 
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),,( dzddr  , that is, 3
3

2
2

1
1 gggx  dddd  with r1 , 2 , z3 .  Here, 

d  does not have the same dimensions as the others.  The physical components in this 
example are ),,( dzrddr  . 
 

The physical components iu  of a vector u are defined to be the components along the 
covariant base vectors, referred to unit vectors.  Thus, 
 

i
i

i
ii

i

i
i

uhu

u

gg

gu

ˆˆ
3

1








                                  (1.16.50) 

 
and 
 

i i i
i iiu hu g u     (no sum)   Physical Components of a Vector   (1.16.51) 

 
From the above, the physical components of a vector v in the cylindrical coordinate 
system are 3211 ,, vvv   and, for the spherical system, 321211 sin,, vv  . 
 
 
The Vector Dot Product 
 
The dot product of two vectors can be written in one of two ways: {▲Problem 6} 
 

i
ii

i vuvu  vu      Dot Product of Two Vectors      (1.16.52) 

 
 
 
The Vector Cross Product 
 
The triple scalar product is an important quantity in analysis with general bases, 
particularly when evaluating cross products.  From Eqns. 1.16.20, 1.16.24, 1.16.24,  
 

   

   ij

ij

g

gg

det

11

det

2321

2
321








ggg

ggg

          (1.16.53) 

 
Introducing permutation symbols ijk

ijk ee , , one can in general write5 

 

g
ege ijkkjiijk

ijkkjiijk

1
,   gggggg  

 

                                                 
5 assuming the base vectors form a right handed set, otherwise a negative sign needs to be included 



Section 1.16 

Solid Mechanics Part III                                                                                Kelly 153

where ijk
ijk    is the Cartesian permutation symbol (Eqn. 1.3.10).  The cross product of 

the base vectors can now be written in terms of the reciprocal base vectors as (note the 
similarity to the Cartesian relation 1.3.12) {▲Problem 7} 
 

k
ijkji

k
ijkji

e

e

ggg

ggg




     Cross Products of Base Vectors  (1.16.54) 

 
Further, from 1.3.19, 
 

i
q

j
p

j
q

i
ppqk

ijk
pqr

ijk
pqr

ijk eeee   ,         (1.16.55) 

 
The Cross Product 
 
The cross product of vectors can be written as {▲Problem 8} 
 

321

321

321

321

321

321

1

vvv

uuu
g

vue

vvv

uuugvue

kji
ijk

kji
ijk

ggg

g

ggg

gvu





   Cross Product of Two Vectors    (1.16.56) 

 
 
1.16.11 Tensors in Curvilinear Coordinates 
 
Tensors can be represented in any of four ways, depending on which combination of base 
vectors is being utilised: 
 

j
ij

i
j

i
i
j

ji
ijji

ij AAAA ggggggggA  
           (1.16.56) 

 
Here, ijA  are the contravariant components, ijA  are the covariant components, i

jA  

and j
iA  are the mixed components of the tensor A.  On the mixed components, the 

subscript is a covariant index, whereas the superscript is called a contravariant index.  
Note that the “first” index always refers to the first base vector in the tensor product. 
 
An “index switching” rule for tensors is 
 

ikk
j

ij
ik

j
kij AAAA   ,         (1.16.57) 

 
and the rule for obtaining the components of a tensor A is (compare with 1.9.4), 
{▲Problem 9} 
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  j

i
j

i
j

i

j
ii

j
i
j

jiijij

jiijij

A

A

A

A

AggA

AggA

AggA

AggA












               (1.16.58) 

 
As with the vectors, the metric coefficients can be used to lower and raise the indices on 
tensors, for example: 
 

kj
ik

j
i

kl
jlikij

TgT

TggT






        (1.16.59) 

 
In matrix form, these expressions can be conveniently used to evaluate tensor 
components, e.g. (note that the matrix of metric coefficients is symmetric) 
 

     lj
kl

ikij gTgT  . 

 
An example of a higher order tensor is the permutation tensor E, whose components are 
the permutation symbols introduced earlier:  
 

kji
ijkkji

ijk ee ggggggE  .                     (1.16.60) 

 
 
Physical Components of a Tensor 
 
Physical components of tensors can also be defined.  For example, if two vectors a and b 
have physical components as defined earlier, then the physical components of a tensor T 
are obtained through6 
 

jiji bTa  .     (1.16.61) 
 
As mentioned, physical components are defined with respect to the covariant base 
vectors, and so the mixed components of a tensor are used, since 
 

  i
i

i
ji

jk
kj

i
i
j abTbT gggggTb    

 
as required.  Then 
 

ii

i

jj

j
i
j

g

a

g

b
T       (no sum on the g) 

 
and so from 1.16.51, 
 

                                                 
 
6 these are called right physical components; left physical components are defined through bTa   
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i
j

jj

iiij T
g

g
T       (no sum) Physical Components of a Tensor   (1.16.62) 

 
The Identity Tensor 
 
The components of the identity tensor I in a general basis can be obtained as follows: 
 

Iu

ugg

ggu

g

gu











)(

)(

ji
ij

ij
ij

ij
ij

i
i

g

g

ug

u

 

 
Thus the contravariant components of the identity tensor are the metric coefficients ijg  

and, similarly, the covariant components are ijg .  For this reason the identity tensor is 

also called the metric tensor.  On the other hand, the mixed components are the 
Kronecker delta, i

j  (also denoted by i
jg ).  In summary7, 

 
   
   
   
    i

i
j

ij
i

j
i

j
i

i
i

j
i

i
j

i
j

i
j

ji
ijijij

ji
ijijij

gg
gg

ggggII
ggggII

ggII
ggII













             (1.16.63) 

 
Symmetric Tensors 
 
A tensor S is symmetric if SS T , i.e. if vSuuSv  .  If S is symmetric, then 
 

k
m

im
jk

i
j

i
jjiij

jiij SggSSSSSS 


  ,,  

 
In terms of matrices, 
 

           T,, i
j

i
j

T
ijij

Tijij SSSSSS    

 
 
1.16.12 Generalising Cartesian Relations to the Case of General 

Bases 
 
The tensor relations and definitions already derived for Cartesian vectors and tensors in 
previous sections, for example in §1.10, are valid also in curvilinear coordinates, for 

                                                 
7 there is no distinction between i

j
j

i  , ;  they are often written as i
j

j
i gg ,  and there is no need to specify 

which index comes first, for example by j
ig   
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example IAA 1 , AIA :tr   and so on.  Formulae involving the index notation may 
be generalised to arbitrary components by: 
 
(1) raising or lowering the indices appropriately  
(2) replacing the (ordinary) Kronecker delta ij  with the metric coefficients ijg  

(3) replacing the Cartesian permutation symbol ijk  with ijke  in vector cross products 

 
Some examples of this are given in Table 1.16.1 below. 
 
Note that there is only one way of representing a scalar, there are two ways of 
representing a vector (in terms of its covariant or contravariant components), and there 
are four ways of representing a (second-order) tensor (in terms of its covariant, 
contravariant and both types of mixed components). 
 

 Cartesian General Bases 
ba   

iiba  
i

ii
i baba   

 
aB  

 

iji Ba  j
i

iij
i

j

ij
ii

jij

BaBa

BaBa








)(

)(

aB

aB
 

 
Ab  

 

jijbA  ji
jj

iji

j
j

i
j

iji

bAbA

bAbA









)(

)(

Ab

Ab
 

 
 
 

AB  

 
 
 

kjik BA  

 
 
 
  k

j
i
kkj

iki
j

kj
ik

j
k

k
i

j
i

kji
k

j
k

ikij

kj
k

i
k
jikij

BABA

BABA

BABA

BABA



















AB

AB

AB

AB

 

 
ba  

 

jiijk ba  
 
  ji

ijkk

ji
ijkk

bae

bae





ba

ba
 

 
 
ba  

 
 

jiba  

 
 
 
  j

ii
j

j
i

j
i

jiij

jiij

ba

ba

ba

ba













ba

ba

ba

ba

 

BA :  
ijij BA  i

j
j

i
j

i
i
jij

ijij
ij BABABABA 


   

AIA :tr   
iiA  i

i
i

i AA 
    

Adet  
321 kjiijk AAA  kji
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j
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j
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,

,
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Table 1.16.1: Tensor relations in Cartesian and general curvilinear coordinates 
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Rectangular Cartesian (Orthonormal) Coordinate System 
 
In an orthonormal Cartesian coordinate system, i

i
i egg  , ijijg  , 1g , 1ih  and 

)( ijk
ijkijke   . 

 
 
1.16.13 Problems 
 
1. Derive the fundamental relation i

jj
i gg . 

2. Show that j
iji g gg   [Hint: assume that one can write k

iki a gg   and then dot both 

sides with jg .] 

3. Use the relations 1.16.29 to show that i
kkj

ij gg  .  Write these equations in matrix 

form. 
4. Show that ii ugu . 

5. Show that j
iji ugu  . 

6. Show that i
ii

i vuvu  vu  

7. Use the relation ge ijkkjiijk  ggg  to derive the cross product relation 
k

ijkji e ggg  .  [Hint: show that   k
kjiji gggggg  .] 

8. Derive equation 1.16.56 for the cross product of vectors 
9. Show that   jiij AggA  . 

10. Given 3132211 ,, eegegeg  , 321 eeev  .  Find j
iijkij

i vveg ,,,,g  (write 

the metric coefficients in matrix form). 
11. Derive the scale factors for the (a) cylindrical and (b) spherical coordinate systems. 
12. Parabolic Cylindrical (orthogonal) coordinates are given by 

     332122221
2
11 ,,  xxx  

with 
 321 ,0,  

Evaluate: 
(i) the scale factors 
(ii) the Jacobian – are there any singular points? 
(iii) the metric, surface elements, and volume element 

Verify that the base vectors ig  are mutually orthogonal. 

[These are intersecting parabolas in the 21 xx   plane, all with the same axis] 
13. Repeat Problem 7 for the Elliptical Cylindrical (orthogonal) coordinates: 

33212211 ,sinsinh,coscosh  xaxax  
with 

 321 ,20,0   

[These are intersecting ellipses and hyperbolas in the 21 xx   plane with foci at 
ax 1 .] 

14. Consider the non-orthogonal curvilinear system illustrated in Fig. 1.16.11, with 
transformation equations 
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33

22

211

3

2
3

1

x

x

xx







 

Derive the inverse transformation equations, i.e. ),,( 321  ii xx , 
the Jacobian matrices 























 
j

i

j

i

x

x 1, JJ , 

the covariant and contravariant base vectors, the matrix representation of the metric 
coefficients    ij

ij gg , , verify that    ij
ij gg   T1T , JJJJ  and evaluate g. 

 

 
Figure 1.16.11: non-orthogoanl curvilinear coordinate system 

 
15. Consider a (two dimensional) curvilinear coordinate system with covariant base 

vectors  

21211 , eegeg   

(a) Evaluate the contravariant base vectors and the metric coefficients ij
ij gg ,  

(b) Consider the vectors  

2121 2,3 ggvggu   
Evaluate the corresponding covariant components of the vectors.  Evaluate vu   
(this can be done in a number of different ways – by using the relations i

ii
i vuvu , , 

or by directly dotting the vectors in terms of the base vectors i
i gg ,  and using the 

metric coefficients ) 
(c) Evaluate the contravariant components of the vector Auw  , given that the 

mixed components i
jA  are 









 11

01
 

Evaluate the contravariant components ijA  using the index lowering/raising rule 
1.16.59.  Re-evaluate the contravariant components of the vector w using these 
components. 

16. Consider i
ji

jA ggA   .  Verify that any of the four versions of I in 1.16.63 results 

in IIA  . 

1x

2x 
1g

2g

1e

2e

curve1 

curve2 

O60

01 
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17. Use the definitions 1.16.19, 1.16.23 to convert ji
ijA gg  , ji

ijA gg   and j
i

i
jA gg   

to the Cartesian bases.  Hence show that Adet  is given by the determinant of the 
matrix of mixed components,  i

jAdet , and not by  ijAdet  or  ijAdet . 
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1.17 Curvilinear Coordinates: Transformation Laws 
 
 
1.17.1 Coordinate Transformation Rules 
 
Suppose that one has a second set of curvilinear coordinates ),,( 321 ΘΘΘ , with 
 

),,(),,,( 321321 ΘΘΘΘ=ΘΘΘΘΘ=Θ iiii            (1.17.1) 
 

By the chain rule, the covariant base vectors in the second coordinate system are given by 
 

ji

j

ji

j

ii gxxg
Θ∂
Θ∂

=
Θ∂
∂

Θ∂
Θ∂

=
Θ∂
∂

=  

 
A similar calculation can be carried out for the inverse relation and for the contravariant 
base vectors, giving 
 

j
j

i
ij

j

i
i

ji

j

iji

j

i

gggg

gggg

Θ∂
Θ∂

=
Θ∂
Θ∂

=

Θ∂
Θ∂

=
Θ∂
Θ∂

=

,

,
          (1.17.2) 

 
The coordinate transformation formulae for vectors u can be obtained from 

i
i

i
i uu ggu ==  and i

i
i

i uu ggu == : 
 

ji

j

iji

j

i

j
j

i
ij

j

i
i

uuuu

uuuu

Θ∂
Θ∂

=
Θ∂
Θ∂

=

Θ∂
Θ∂

=
Θ∂
Θ∂

=

,

,
     Vector Transformation Rule   (1.17.3) 

 
These transformation laws have a simple structure and pattern – the 
subscripts/superscripts on the transformed coordinates Θ  quantities match those on the 
transformed quantities, g,u , and similarly for the first coordinate system. 
 
Note: 
• Covariant and contravariant vectors (and other quantities) are often defined in terms of the 

transformation rules which they obey.  For example, a covariant vector can be defined as one 
whose components transform according to the rules in the second line of the box Eqn. 1.17.3  

 
The transformation laws can be extended to higher-order tensors, 
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n
mi

m

n

j
j

i
n

mi

m

n

j
j

i

m
nj

n

m

i
i
j

m
nj

n

m

i
i
j

mn
n

j

m

i
ijmn

n

j

m

i
ij

mnj

n

i

m

ijmnj

n

i

m

ij

AAAA

AAAA

AAAA

AAAA

⋅⋅⋅⋅

⋅⋅⋅⋅

Θ∂
Θ∂

Θ∂
Θ∂

=
Θ∂
Θ∂

Θ∂
Θ∂

=

Θ∂
Θ∂

Θ∂
Θ∂

=
Θ∂
Θ∂

Θ∂
Θ∂

=

Θ∂
Θ∂

Θ∂
Θ∂

=
Θ∂
Θ∂

Θ∂
Θ∂

=

Θ∂
Θ∂

Θ∂
Θ∂

=
Θ∂
Θ∂

Θ∂
Θ∂

=

,

,

,

,

 Tensor Transformation Rule (1.17.4) 

 
From these transformation expressions, the following important theorem can be deduced: 
 

If the tensor components are zero in any one coordinate system, they also 
vanish in any other coordinate system 

 
Reduction to Cartesian Coordinates 
 
For the Cartesian system, let i

ii
i

ii ggegge ==′== ,  and 
 

j

i
j

i

ij x
x

Q
′∂

∂
=

Θ∂
Θ∂

=                                            (1.17.5) 

 
It follows from 1.17.2 that 
 

1−=→
Θ∂
Θ∂

=
Θ∂
Θ∂

ijjij

i

i

j

QQ                                   (1.17.6) 

 
so the transformation is orthogonal, as expected.  Also, as in Eqns. 1.5.11 and 1.5.13. 
 

jjijiji
j

j

i
i

jiji
j

j

i
i

uQuQuuu

uQuuu

==′→
Θ∂
Θ∂

=

′=→
Θ∂
Θ∂

=

−1

                     (1.17.7) 

 
Transformation Matrix 
 
Transforming coordinates from ii gg → , one can write 
 

( ) j
j

ij
j

ii M ggggg ⋅== ⋅                                            (1.17.8) 
 
The transformation for a vector can then be expressed, in index notation and matrix 
notation, as 
 

[ ] [ ][ ]j
j

iij
j

ii vMvvMv ⋅⋅ == ,                                            (1.17.9) 
 
and the transformation matrix is 



Section 1.17 

Solid Mechanics Part III                                                                                Kelly 162 

 

[ ] [ ]j
ii

j
j

iM gg ⋅=







Θ∂
Θ∂

=⋅      Transformation Matrix       (1.17.10) 

 
The rule for contravariant components is then, from 1.17.4, 

 
[ ] [ ] [ ][ ]j

n
mni

m
ijmnj

n
i

m
ij MAMAAMMA ⋅⋅⋅⋅ ==

T,                    (1.17.11) 
 
 
The Identity Tensor 
 
The identity tensor transforms as  
 

i
i

k
j

j
k

k
jk

i

i

j
i

i
j

i
i
j ggggggggggI ⊗=⊗=⊗

Θ∂
Θ∂

Θ∂
Θ∂

=⊗=⊗= δδ       (1.17.12) 

 
Note that 
 

mnj

n

i

m

nmj

n

i

m

jiij

mnj

n

i

m

nmj

n

i

m

jiij

gg

gg

Θ∂
Θ∂

Θ∂
Θ∂

=⋅
Θ∂
Θ∂

Θ∂
Θ∂

=⋅=

Θ∂
Θ∂

Θ∂
Θ∂

=⋅
Θ∂
Θ∂

Θ∂
Θ∂

=⋅=

gggg

gggg
                   (1.17.13) 

 
so that, for example, 
 

nm
mn

n
n

j
m

m

i

mnj

n

i

m
ji

ij ggg ggggggI ⊗=⊗
Θ∂
Θ∂

Θ∂
Θ∂

Θ∂
Θ∂

Θ∂
Θ∂

=⊗=        (1.17.14) 

 
 
1.17.2 The Metric of the Space 
 
In a second coordinate system, the metric 1.16.38 transforms to 
 

( )

( )2

2)(

s

g

gs

qp
pq

qp
mk

m
q

k
p

q
q

j
p

p

i

mj

m

ki

k

ji
ji

ji
ij

∆=

∆Θ∆Θ=

∆Θ∆Θ⋅=

∆Θ
Θ∂
Θ∂

∆Θ
Θ∂
Θ∂









Θ∂
Θ∂

⋅
Θ∂
Θ∂

=

∆Θ∆Θ⋅=

∆Θ∆Θ=∆

gg

gg

gg

δδ

              (1.17.15) 

 
confirming that the metric is a scalar invariant. 
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1.17.3 Problems 
 
1 Show that nm

mn vug  is an invariant. 

2 How does g  transform between different coordinate systems (in terms of the 
Jacobian of the transformation, [ ]pmJ Θ∂Θ∂= /det )?  [Note that g, although a scalar, 
is not invariant; it is thus called a pseudoscalar.] 

3 The components ijA  of a tensor A are 

















−

−

210
010
121

 

in cylindrical coordinates, at the point 3,4/,1 === zr πθ .  Find the contravariant 
components of A at this point in spherical coordinates. [Hint: use matrix 
multiplication.] 
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1.18 Curvilinear Coordinates: Tensor Calculus 
 
 
1.18.1 Differentiation of the Base Vectors 
 
Differentiation in curvilinear coordinates is more involved than that in Cartesian 
coordinates because the base vectors are no longer constant and their derivatives need to 
be taken into account, for example the partial derivative of a vector with respect to the 
Cartesian coordinates is 
 

i
j

i

j x

v

x
e

v








     but1     
j

ii
ij

i

j
v

v










 g

g
v

 

 
The Christoffel Symbols of the Second Kind 
 
First, from Eqn. 1.16.19 – and using the inverse relation, 
 

km

k

ji

m

mi

m

jj
i

x

xx
ge

g























 2

     (1.18.1) 

 
this can be written as 
 

k
k
ijj

i g
g





   Partial Derivatives of Covariant Base Vectors   (1.18.2) 

 
where 
 

m

k

ji

m
k
ij x

x








2

,              (1.18.3) 

 
and k

ij  is called the Christoffel symbol of the second kind; it can be seen to be  

equivalent to the kth contravariant component of the vector j
i  /g .  One then has 

{▲Problem 1} 
 

k
i

jk
j

ik
ji

k
ij g

g
g

g










    Christoffel Symbols of the 2nd kind  (1.18.4) 

 
and the symmetry in the indices i and j is evident2.  Looking now at the derivatives of the 
contravariant base vectors ig : differentiating the relation k

i
k

i gg  leads to  

 

k
ij

k
m

m
ij

k
j

i
ij

k









 ggg
g

g
g

 

                                                 
1 of course, one could express the 

i
g  in terms of the 

i
e , and use only the first of these expressions 

2 note that, in non-Euclidean space, this symmetry in the indices is not necessarily valid 
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and so 
 

ki
jkj

i

g
g





   Partial Derivatives of Contravariant Base Vectors   (1.18.5) 

 
Transformation formulae for the Christoffel Symbols 
 
The Christoffel symbols are not the components of a (third order) tensor.  This follows 
from the fact that these components do not transform according to the tensor 
transformation rules given in §1.17.  In fact, 
 

s

k

ji

s
r
pqr

k

j

q

i

p
k

ij 
















2

 

 
The Christoffel Symbols of the First Kind 
 
The Christoffel symbols of the second kind relate derivatives of covariant (contravariant) 
base vectors to the covariant (contravariant) base vectors.  A second set of symbols can be 
introduced relating the base vectors to the derivatives of the reciprocal base vectors, 
called the Christoffel symbols of the first kind: 
 

ki

j
kj

i
jikijk g

g
g

g










    Christoffel Symbols of the 1st kind  (1.18.6) 

 
so that the partial derivatives of the covariant base vectors can be written in the 
alternative form 
 

k
ijkj

i g
g





,     (1.18.7) 

 
and it also follows from Eqn. 1.18.2 that 
 

mk
ijm

k
ijmk

m
ijijk gg  ,     (1.18.8) 

 
showing that the index k here can be raised or lowered using the metric coefficients as for 
a third order tensor (but the first two indexes, i and j, cannot and, as stated, the Christoffel 
symbols are not the components of a third order tensor). 
 
Example: Newton’s Second Law 
 
The position vector can be expressed in terms of curvilinear coordinates,  i xx .  The 
velocity is then 
 

i

ii

i dt

d

dt

d

dt

d
g

xx
v
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and the acceleration is 
 

i

kj
i
jk

ik

k

j
j

i

i

dt

d

dt

d

dt

d

dt

d

dt

d

dt

d

dt

d
g

g
g

v
a 







 














2

2

2

2

 

 
Equating the contravariant components of Newton’s second law af m  then gives the 
general curvilinear expression 
 

 kji
jk

ii mf    

■  
 
 
Partial Differentiation of the Metric Coefficients 
 
The metric coefficients can be differentiated with the aid of the Christoffel symbols of the 
first kind {▲Problem 3}: 
 

jkiikjk

ijg





             (1.18.9) 

 
Using the symmetry of the metric coefficients and the Christoffel symbols, this equation 
can be written in a number of different ways: 
 

jkikijkijg , ,     kijijkijkg , ,     ijkjkijkig ,  

 
Subtracting the first of these from the sum of the second and third then leads to the useful 
relations (using also 1.18.8) 
 

 

 mijjmiijm
mkk

ij

kijjkiijkijk

gggg

ggg

,,,

,,,

2

1
2

1




              (1.18.10) 

 
which show that the Christoffel symbols depend on the metric coefficients only.    
 
Alternatively, one can write the derivatives of the metric coefficients in the form (the first 
of these is 1.18.9) 
 

i
km

jmj
km

im
k

ij

jkiikjkij

ggg

g





,

,
                 (1.18.11) 

 
Also, directly from 1.15.7, one has the relations 
 

ijij
ij

ij

gg
g

g
gg

g

g









,           (1.18.12) 
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and from these follow other useful relations, for example {▲Problem 4} 
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       (1.18.13) 

 
and 
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                (1.18.14) 

 
 
1.18.2 Partial Differentiation of Tensors 
 
The Partial Derivative of a Vector 
 
The derivative of a vector in curvilinear coordinates can be written as 
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     (1.18.15) 

 
where 
 

k
k
ijjiji

ki
kjj

i
j

i

vvv

vvv





,

,

|

|
  Covariant Derivative of Vector Components  (1.18.16) 

 
The first term here is the ordinary partial derivative of the vector components.  The 
second term enters the expression due to the fact that the curvilinear base vectors are 
changing.  The complete quantity is defined to be the covariant derivative of the vector 
components.  The covariant derivative reduces to the ordinary partial derivative in the 
case of rectangular Cartesian coordinates. 
 
The jiv |  is the ith component of the j – derivative of v.  The jiv |  are also the 

components of a second order covariant tensor, transforming under a change of 
coordinate system according to the tensor transformation rule 1.17.4 (see the gradient of a 
vector below). 
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The covariant derivative of vector components is given by 1.18.16.  In the same way, the 
covariant derivative of a vector is defined to be the complete expression in 1.18.15, j,v , 

with ij
i

j v gv |,  . 

 
The Partial Derivative of a Tensor 
 
The rules for covariant differentiation of vectors can be extended to higher order tensors.  
The various partial derivatives of a second-order tensor 
 

j
i

i
jj
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ji
ijji

ij AAAA ggggggggA  
  

 
are indicated using the following notation: 
 

j
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i
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 ||||        (1.18.17) 

 
Thus, for example, 
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and, in summary, 
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                     (1.18.18) 

Covariant Derivative of Tensor Components   
 
The covariant derivative formulas can be remembered as follows: the formula contains 
the usual partial derivative plus 
 for each contravariant index a term containing a Christoffel symbol in which that index 

has been inserted on the upper level, multiplied by the tensor component with that index 
replaced by a dummy summation index which also appears in the Christoffel symbol 

 for each covariant index a term prefixed by a minus sign and containing a Christoffel 
symbol in which that index has been inserted on the lower level, multiplied by the 
tensor with that index replaced by a dummy which also appears in the Christoffel 
symbol. 

 the remaining symbol in all of the Christoffel symbols is the index of the variable with 
respect to which the covariant derivative is taken. 

 
For example,  
 

i
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m
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i
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m
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m
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i
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i
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i
jk AAAAA   ,|  
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Note that the covariant derivative of a product obeys the same rules as the ordinary 
differentiation, e.g. 
 

  m
jk

i
jk

mim
jk

i AuAuAu ||| |   

 
Covariantly Constant Coefficients 
 
It can be shown that the metric coefficients are covariantly constant3 {▲Problem 5}, 
 

0||  k
ij

kij gg , 

 
This implies that the metric (identity) tensor I is constant, 0, kI  (see Eqn. 1.16.32) – 

although its components ijg  are not constant.  Similarly, the components of the 

permutation tensor, are covariantly constant 
 

0||  m
ijk

mijk ee . 

 
In fact, specialising the identity tensor I and the permutation tensor E to Cartesian 
coordinates, one has ij

ij
ij gg  , ijk

ijk
ijk ee  , which are clearly constant.  

Specialising the derivatives, kijkijg ,|  , mijkmijke ,|  , and these are clearly zero.  

From §1.17, since if the components of a tensor vanish in one coordinate system, they 
vanish in all coordinate systems, the curvilinear coordinate versions vanish also, as stated 
above. 
 
The above implies that any time any of these factors appears in a covariant derivative, 
they may be extracted, as in     k

i
ijk

i
ij ugug ||  . 

 
The Riemann-Christoffel Curvature Tensor 
 
Higher-order covariant derivatives are defined by repeated application of the first-order 
derivative.  This is straight-forward but can lead to algebraically lengthy expressions.  For 
example, to evaluate mniv | , first write the first covariant derivative in the form of a second 

order covariant tensor B, 
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so that 
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3  
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The covariant derivative nmiv |  is obtained by interchaning m and n in this expression.  

Now investigate the difference 
 

       
   l

l
ikki

k
nml

l
ikki

k
mn

l
l
knnk

k
iml

l
kmmk

k
inmk

k
innink

k
imminmimni

vvvv

vvvvvvvvvv





,,

,,,,,,||
 

 
The last two terms cancel here because of the symmetry of the Christoffel symbol, 
leaving 
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The order on the ordinary partial differentiation is interchangeable and so the second 
order partial derivative terms cancel, 
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After further cancellation one arrives at 
 

j
j
imnnmimni vRvv  ||                                        (1.18.20) 

 
where R is the fourth-order Riemann-Christoffel curvature tensor, with (mixed) 
components 
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imnR  ,,    (1.18.21) 

 
Since the Christoffel symbols vanish in a Cartesian coordinate system, then so does j

imnR .  

Again, any tensor that vanishes in one coordinate system must be zero in all coordinate 
systems, and so 0

j
imnR , implying that the order of covariant differentiation is 

immaterial, nmimni vv ||  . 

 
From 1.18.10, it follows that 
 

0



iljkikljijkl

klijijlkjiklijkl

RRR

RRRR
 

 
The latter of these known as the Bianchi identities.  In fact, only six components of the 
Riemann-Christoffel tensor are independent; the expression 0

j
imnR  then represents 6 

equations in the 6 independent components ijg . 

 
This analysis is for a Euclidean space – the usual three-dimensional space in which 
quantities can be expressed in terms of a Cartesian reference system – such a space is 
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called a flat space.  These ideas can be extended to other, curved spaces, so-called 
Riemannian spaces (Riemannian manifolds), for which the Riemann-Christoffel tensor 
is non-zero (see §1.19). 
 
 
1.18.3 Differential Operators and Tensors 
 
In this section, the concepts of the gradient, divergence and curl from §1.6 and §1.14 are 
generalized to the case of curvilinear components. 
 
Space Curves and the Gradient 
 
Consider first a scalar function  xf , where i

ix ex   is the position vector, with 

 jii xx  .  Let the curvilinear coordinates depend on some parameter s,  sjj  , 
so that )(sx  traces out a space curve C. 
 
For example, the cylindrical coordinates  sjj  , with ar   , cs / , csbz / , 

cs 20  , generate a helix. 
 
From §1.6.2, a tangent to C is 
 

i
i

i

i ds

d

ds

d
g

xx
τ 




  

 
so that dsd i /  are the contravariant components of τ .  Thus 
 

 j
ji

i
i

i

ff

ds

df
gg  














 . 

 
For Cartesian coordinates, τ fdsdf /  (see the discussion on normals to surfaces in 
§1.6.4).  For curvilinear coordinates, therefore, the Nabla operator of 1.6.11 now reads  
 

i
i




 g          (1.18.22) 

 
so that again the directional derivative is 

 

τ f
ds

df
 

 
The Gradient of a Scalar 
 
In general then, the gradient of a scalar valued function   is defined to be 
 

i
i

g



 grad     Gradient of a Scalar     (1.18.23) 
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and, with i
i

i
i ddxd gex  , one has 

 

xddd i
i





           (1.18.24) 

 
The Gradient of a Vector 
 
Analogous to Eqn. 1.14.3, the gradient of a vector is defined to be the tensor product of 
the derivative j /u  with the contravariant base vector jg : 
 

j
ij

i

ji
ji

j
j

u

u

gg

ggg
u

u









|

|grad
     Gradient of a Vector      (1.18.25) 

 
Note that 
 

j
i

i
jji

iji
i

i
i uu gggg

u
gugu 








 ||  

 

so that again one arrives at Eqn. 1.14.7,   uu gradT  . 
 
Again, one has for a space curve parameterised by s, 
 

  τuτ
u

ggτ
uuu




















 grad
T

i
ii

i
i

ids

d   

 
Similarly, from 1.18.18, the gradient of a second-order tensor is 
 

kj
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i
j

k
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i
k

j
i
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k
jik

ijk
k

A

A

A

A

ggg

ggg

ggg

gggg
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|

|

|

|grad

 Gradient of a Tensor     (1.18.26) 

 
The Divergence 
 
From 1.14.9, the divergence of a vector is {▲Problem 6} 
 







 




 j
ji

iu g
u

Iuu |:graddiv      Divergence of a Vector    (1.18.27) 

 
This is equivalent to the divergence operation involving the Nabla operator, .div uu    
An alternative expression can be obtained from 1.18.13 {▲Problem 7}, 
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i

i

i
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i
i Ju

J
ug
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 11

|divu  

 
Similarly, using 1.14.12, the divergence of a second-order tensor is 
 

i
j

j
i

j
jij

ij

A

A

g

g
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gIAA
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|:graddiv















   Divergence of a Tensor  (1.18.28) 

 
Here, one has the alternative definition, 
 









 ij
ji

i
i

i
i A g

A
gAgA |  

 
so that again one arrives at Eqn. 1.14.14, Tdiv AA  . 
 
The Curl 
 
The curl of a vector is defined by {▲Problem 8} 
 

ki

jijk
kij

ijk
k

k
u

eue gg
u

guu








 |curl    Curl of a Vector     (1.18.29) 

 
the last equality following from the fact that all the Christoffel symbols cancel out. 
 
Covariant derivatives as Tensor Components 
 
Equation 1.18.25 shows clearly that the covariant derivatives of vector components are 
themselves the components of second order tensors.  It follows that they can be 
manipulated as other tensors, for example, 
 

j
i

jm
im uug ||   

 
and it is also helpful to introduce the following notation: 
 

mj
m

ijimj
mi

j
i guuguu ||,||  . 

 
The divergence and curl can then be written as {▲Problem 10} 
 

kij
ijkkij

ijk

i
ii

i

ueue

uu

ggu

u

||curl

||div




. 
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Generalising Tensor Calculus from Cartesian to Curvilinear Coordinates 
 
It was seen in §1.16.7 how formulae could be generalised from the Cartesian system to 
the corresponding formulae in curvilinear coordinates.  In addition, formulae for the 
gradient, divergence and curl of tensor fields may be generalised to curvilinear 
components simply by replacing the partial derivatives with the covariant derivatives.  
Thus: 
 
  Cartesian Curvilinear 
Gradient Of a scalar field 

ix /,grad   i
ii  /|,   

of a vector field 
ji xu  /gradu  

j
iu |  

of a tensor field 
kij xT  /gradT  

k
ijT |  

Divergence of a vector field 
ii xu  /,div uu  

i
iu |  

of a tensor field jij xT  /divT  
j

ijT |  

Curl of a vector field 
ijijk xu  /,curl uu  

ij
ijk ue |  

Table 1.18.1: generalising formulae from Cartesian to General Curvilinear 
Coordinates 

 
All the tensor identities derived for Cartesian bases (§1.6.9, §1.14.3) hold also for 
curvilinear coordinates, for example {▲Problem 11} 
 

 
  vAAvvA

vvv

grad:divdiv

gradgradgrad


 

 

 
 
1.18.4 Partial Derivatives with respect to a Tensor 
 
The notion of differentiation of one tensor with respect to another can be generalised from 
the Cartesian differentiation discussed in §1.15.  For example: 
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nm
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jin

j
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inm
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j
ij
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ji

ij

A

A

A

B
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gggg

gggggggg
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A

gggg
A

B

gggg
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1.18.5 Orthogonal Curvilinear Coordinates 
 
This section is based on the groundwork carried out in §1.16.9.  In orthogonal curvilinear 
systems, it is best to write all equations in terms of the covariant base vectors, or in terms 
of the corresponding physical components, using the identities (see Eqn. 1.16.45) 
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i
i

i
i

i

hh
ggg ˆ

11
2

      (no sum)      (1.18.30) 

  
The Gradient of a Scalar Field 
 
From the definition 1.18.23 for the gradient of a scalar field, and Eqn. 1.18.30, one has 
for an orthogonal curvilinear coordinate system, 
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3

22
2

11
1

332
3

222
2

112
1

ˆ
1

ˆ
1

ˆ
1

111

ggg

ggg



























hhh

hhh
                     (1.18.31) 

 
The Christoffel Symbols 
 
The Christoffel symbols simplify considerably in orthogonal coordinate systems.  First, 
from the definition 1.18.4, 

 

kj
i

k

k
ij h

g
g






2

1
              (1.18.32) 

 
Note that the introduction of the scale factors h into this and the following equations 
disrupts the summation and index notation convention used hitherto.  To remain 
consistent, one should use the metric coefficients and leave this equation in the form 
 

m
km

j
ik

ij g g
g





  

 
Now 
 

  i
ijiij

i
iij

h 





 





 222 g

g
gg  

 
and 2

iii hgg  so, in terms of the derivatives of the scale factors, 

 

j
i

i
ik

k
ij

i
ij

h

h 





1
    (no sum)              (1.18.33) 

 
Similarly, it can be shown that {▲Problem 14}  
 

i
jki

j
kij

i
jki

k
ijk hhhh  2222  when kji          (1.18.34) 

 
so that the Christoffel symbols are zero when the indices are distinct, so that there are 
only 21 non-zero symbols of the 27.  Further, {▲Problem 15} 
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k
i

k

i

ji

k
ij

k
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h

h

h





 2

,   ki       (no sum)      (1.18.35) 

 
From the symmetry condition (see Eqn. 1.18.4), only 15 of the 21 non-zero symbols are 
distinct: 
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33
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Note also that these are related to each other through the relation between (1.18.33, 
1.18.35), i.e. 
 

i
ik

k

ik
ii h

h


2

2

,    ki       (no sum) 

 
so that 
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1
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h
 (1.18.36) 

 
The Gradient of a Vector 
 
From the definition 1.18.25, the gradient of a vector is 
 

jij

i

j

j
ij

i v
h

v ggggv 
2

1
grad     (no sum over jh )      (1.18.37) 

 
In terms of physical components, 
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h
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1

1
grad

2

































  (1.18.38) 

 
The Divergence of a Vector 
 

From the definition 1.18.27, the divergence of a vector is 
i

ivvdiv  or {▲Problem 16} 
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v i
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iv      (1.18.39) 

 
The Curl of a Vector 
 
From §1.16.10, the permutation symbol in orthogonal curvilinear coordinates reduceS to 
 

ijkijk

hhh
e 

321

1
     (1.18.40) 

 
where ijk

ijk    is the Cartesian permutation symbol.  From the definition 1.18.29, the 

curl of a vector is then 
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     (1.18.41) 

 
or 
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The Laplacian 
 
From the above results, the Laplacian is given by 
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Divergence of a Tensor 
 
From the definition 1.18.28, and using 1.16.59, 1.16.62 {▲Problem 17} 
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  (1.18.43) 

 
Examples 
 
1. Cylindrical Coordinates 
 
Gradient of a Scalar Field: 

332
2
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ˆˆ

1
ˆ ggg














    

 
Christoffel symbols: 

With 1,,1 3
1

21  hhh , there are two distinct non-zero symbols: 

1
2
21

2
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22

1





 

 
Derivatives of the base vectors: 

The non-zero derivatives are 
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2
1 ,

1
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g
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and in terms of physical components, the non-zero derivatives are 
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ˆ
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ˆ
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which agree with 1.6.32. 
 

The Divergence (see 1.6.33), Curl (see 1.6.34) and Gradient {▲Problem 18} (see 
1.14.18) of a vector: 
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The Divergence of a tensor {▲Problem 19} (see 1.14.19): 

33

33

2

32

11

31

1

31

21

1221

3

23

2

22

11

21

11

2211

3

13

2

12

11

11

ˆ
1

ˆ
1

ˆ
1

div

g

g

gA































































































AAAA

AAAAA

AAAAA

 

 
2. Spherical Coordinates 
 
Gradient of a Scalar Field: 

332122111
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Christoffel symbols: 

With 21
3

1
21 sin,,1  hhh , there are six distinct non-zero symbols: 

23
32

3
231

3
31

3
13

222
331

2
21

2
12

2211
33

11
22

cot,
1

cossin,
1

sin,













 

 
Derivatives of the base vectors: 

The non-zero derivatives are 
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and in terms of physical components, the non-zero derivatives are 
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which agree with 1.6.37. 
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The Divergence (see 1.6.38), Curl and Gradient of a Vector: 
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The Divergence of a tensor {▲Problem 20} 
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1.18.6 Problems 
 
1 Show that the Christoffel symbol of the second kind is symmetric, i.e. k

ji
k
ij  , and 

that it is explicitly given by k
j

ik
ij g

g





 . 

2 Consider the scalar-valued function   ji
ij vuA vAu .  By taking the gradient of 

this function, and using the relation for the covariant derivative of A, i.e. 

im
m
jkmj

m
ikkijkij AAAA  ,| , show that 

    k
ji

ijk

ji
ij vuA

vuA
|




, 
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i.e. the partial derivative and covariant derivative are equivalent for a scalar-valued 
function. 

3 Prove 1.18.9: 

(i) jkiikjk

ijg





,        (ii) i

km
jmj

km
im

k

ij

gg
g





 

[Hint: for (ii), first differentiate Eqn. 1.16.10, i
kkj

ij gg  .] 

4 Derive 1.18.13, relating the Christoffel symbols to the partial derivatives of g  and 

 glog .  [Hint: begin by using the chain rule 
j

mn

mn
j

g

g

gg











.] 

5 Use the definition of the covariant derivative of second order tensor components, Eqn. 
1.18.18, to show that (i) 0| kijg  and (ii) 0| k

ijg . 

6 Use the definition of the gradient of a vector, 1.18.25, to show that 

i
iu |:graddiv  Iuu . 

7 Derive the expression     iiugg  //1divu  

8 Use 1.16.54 to show that   kij
ijkkk ue gug |/  . 

9 Use the relation j
n

k
m

k
n

j
mimn

ijk    (see Eqn. 1.3.19) to show that 

 
     122113312332

332211

321

curl

vuvuvuvuvuvu

k
k

k
k

k
k

















ggg

vu . 

10 Show that (i) i
ii

i uu ||  , (ii) kij
ijkkij

ijk ueue gg ||   

11 Show that 
(i)    gradgradgrad  vvv ,    (ii)   vAAvvA grad:divdiv   

[Hint: you might want to use the relation  baTbaT  :  for the second of these.] 

12 Derive the relation   IAA  /tr  in curvilinear coordinates. 
13 Consider a (two dimensional) curvilinear coordinate system with covariant base 

vectors 1
1

221
2

1 ,2 egeeg  . 

(a) Evaluate the transformation equations )( jii xx   and the Jacobian J. 

(b) Evaluate the inverse transformation equations  jii x  and the contravariant 

base vectors ig . 

(c) Evaluate the metric coefficients ij
ij gg ,  and the function g: 

(d) Evaluate the Christoffel symbols (only 2 are non-zero 
(e) Consider the scalar field 21  .  Evaluate grad . 

(f) Consider the vector fields   21

21
2

2
1 2, ggvggu  : 

(i) Evaluate the covariant components of the vectors u and v 
(ii) Evaluate vu div,div  
(iii)Evaluate vu curl,curl  
(iv) Evaluate vu grad,grad  

(g) Verify the vector identities 
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  0curldiv

gradcurl

curlcurldiv

gradcurlcurl

graddivdiv
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(h) Verify the identities 
 
     

   
     uvvuuvvuvu

uvvuvu

uvvuvu

vvv

gradgraddivdivcurl

)div(graddiv

gradgradgrad

gradgradgrad
TT







 

(i) Consider the tensor field 

   ji ggA 









 22

01
 

Evaluate all contravariant and mixed components of the tensor A 

14 Use the fact that 0 ik gg , ik   to show that 
k

ij

i
jki

k
ijk hh  22 .  Then permutate the 

indices to show that i
jki

j
kij

i
jki

k
ijk hhhh  2222  when kji  . 

15 Use the relation 

  jijii





,0gg  

to derive i
ij

j

ij
ii h

h


2

2

.  

16 Derive the expression 1.18.39 for the divergence of a vector field v. 
17 Derive 1.18.43 for the divergence of a tensor in orthogonal coordinate systems. 
18 Use the expression 1.18.38 to derive the expression for the gradient of a vector field 

in cylindrical coordinates. 
19 Use the expression 1.18.43 to derive the expression for the divergence of a tensor 

field in cylindrical coordinates. 
20 Use the expression 1.18.43 to derive the expression for the divergence of a tensor 

field in spherical coordinates. 
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1.19 Curvilinear Coordinates: Curved Geometries 
 
In this section is examined the special case of a two-dimensional curved surface. 
 
 
1.19.1 Monoclinic Coordinate Systems 
 
Base Vectors 
 
A curved surface can be defined using two covariant base vectors 21 , aa , with the third 
base vector, 3a , everywhere of unit size and normal to the other two, Fig. 1.19.1  These 
base vectors form a monoclinic reference frame, that is, only one of the angles between 
the base vectors is not necessarily a right angle. 
 

 
 

Figure 1.19.1: Geometry of the Curved Surface 
 
In what follows, in the index notation, Greek letters such as βα ,  take values 1 and  2; as 
before, Latin letters take values from 1..3. 
 
Since 3

3 aa =  and 
 

033 =⋅= aaααa ,      033 =⋅= aaααa    (1.19.1) 
 
the determinant of metric coefficients is 
 

100
0
0

2221

1211
2 gg

gg
J = ,           

100
0
0

1 2221

1211

2 gg
gg

J
=   (1.19.2) 

 
The Cross Product 
 
Particularising the results of §1.16.10, define the surface permutation symbol to be the 
triple scalar product 
 
 

1a

2a

3a

1Θ

2Θ
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g
ege 1, 3

3
αββααβ

αββααβ εε =×⋅≡=×⋅≡ aaaaaa           (1.19.3) 

where αβ
αβ εε =  is the Cartesian permutation symbol, 112 +=ε , 121 −=ε , and zero 

otherwise, with 
 

ηµ
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β
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β
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α
µµη
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αβ δδδδεε eeeeee =−== ,         (1.19.4) 
 
From 1.19.3, 
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αββα

e

e
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                                                   (1.19.5) 

 
and so 
 

g
21

3
aaa ×

=      (1.19.6) 

 
The cross product of surface vectors, that is, vectors with component in the normal ( 3g ) 
direction zero, can be written as 
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vv
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g
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vv
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gvue
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                                  (1.19.7) 

 
The Metric and Surface elements 
 
Considering a line element lying within the surface, so that 03 =Θ , the metric for the 
surface is 
 

( ) ( ) ( ) βα
αββ

β
α

α ΘΘ=Θ⋅Θ=⋅=∆ ddgdddds aass2   (1.19.8) 
 
which is in this context known as the first fundamental form of the surface. 
 
Similarly, from 1.16.41, a surface element is given by 
 

21∆Θ∆Θ=∆ gS          (1.19.9) 
 
Christoffel Symbols 
 
The Christoffel symbols can be simplified as follows.  A differentiation of 133 =⋅aa  
leads to 
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3,33,3 aaaa ⋅−=⋅ αα                            (1.19.10) 
 
so that, from Eqn 1.18.6, 
 

03333 =Γ=Γ αα           (1.19.11) 
 
Further, since 0/ 3

3 =Θ∂∂a , 
 

0,0 33333 =Γ=Γ α            (1.19.12) 
 
These last two equations imply that the ijkΓ  vanish whenever two or more of the 
subscripts are 3.   
 
Next, differentiate 1.19.1 to get 
 

αββα aaaa ⋅−=⋅ ,33, ,     α
ββ

α aaaa ⋅−=⋅ ,
33

,                   (1.19.13) 
 
and Eqns. 1.18.6 now lead to 
 

αββαβααβ 3333 Γ−=Γ−=Γ=Γ           (1.19.14) 
 
From 1.18.8, using 1.19.11, 
 

033
33

33
3

3
3
3

3
33

3
33

=Γ=Γ+Γ=Γ

Γ=Γ+Γ=Γ

αα
β

αβα

αβαβ
γ

αβγαβ

gg

gg
               (1.19.15) 

 
and, similarly {▲Problem 1} 
 

03
3333

3
3 =Γ=Γ=Γ α

α                        (1.19.16) 
 
 
1.19.2 The Curvature Tensor 
 
In this section is introduced a tensor which, with the metric coefficients, completely 
describes the surface.   
 
First, although the base vector 3a  maintains unit length, its direction changes as a 
function of the coordinates 21 ,ΘΘ , and its derivative is, from 1.18.2 or 1.18.5 (and using 
1.19.15) 
 

β
β
ααα aa

a
33

3 Γ=Γ=
Θ∂
∂

k
k ,     β

αβαα aaa 33
3

Γ−=Γ−=
Θ∂
∂ k

k               (1.19.17) 

 
Define now the curvature tensor K to have the covariant components αβK , through 
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β
αβα a

a
K−=

Θ∂
∂ 3                (1.19.18) 

 
and it follows from 1.19.13, 1.19.15a and 1.19.14, 
 

βααβαβαβ 33
3 Γ−=Γ=Γ=K                                         (1.19.19) 

 
and, since these Christoffel symbols are symmetric in the βα , , the curvature tensor is 
symmetric. 
 
The mixed and contravariant components of the curvature tensor follows from 1.16.58-9: 
 

γ
γ
αγ

γβ
αβ

β
αβα

γλ
βλαγαβγβ

αγαγ
γββ

α

aaa
a

KgKK

KggKKgKgK

−=−=−≡
Θ∂
∂

===

3

,
                 (1.19.20) 

 
and the “dot” is not necessary in the mixed notation because of the symmetry property.  
From these and 1.18.8, it follows that 
 

α
β

α
ββγ

γα
γβ

γαα
β 333 Γ−=Γ−=Γ−== gKgK                               (1.19.21) 

 
Also, 
 

( ) ( )
( ) ( )

βα
αβ

β
βγα

αγ

β
βα

α

ΘΘ−=

Θ⋅Θ−=

Θ⋅Θ=⋅

ddK

ddK

dddd

aa

aasa ,33

             (1.19.22) 

 
which is known as the second fundamental form of the surface. 
 
From 1.19.19 and the definitions of the Christoffel symbols, 1.18.4, 1.18.6, the curvature 
can be expressed as 
 

αββ
α

αβ a
a

a
a

⋅
Θ∂
∂

−=⋅
Θ∂
∂

= 3
3K           (1.19.23) 

 
showing that the curvature is a measure of the change of the base vector αa  along the βΘ  
curve, in the direction of the normal vector; alternatively, the rate of change of the normal 
vector along βΘ , in the direction αa− .  Looking at this in more detail, consider now the 
change in the normal vector 3a  in the 1Θ  direction, Fig. 1.19.2.  Then 
 

γ
γ aaa 1
1

1
1,33 Θ−=Θ= dKdd               (1.19.24) 
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Figure 1.19.2: Curvature of the Surface 
 
Taking the case of 0,0 2

1
1
1 =≠ KK , one has 1

11
13 aa Θ−= dKd .  From Fig. 1.19.2, and 

since the normal vector is of unit length, the magnitude 3ad  equals φd , the small angle 

through which the normal vector rotates as one travels along the 1Θ  coordinate curve.  
The curvature of the surface is defined to be the rate of change of the angle φ :1 
 

1
1

1
1

1
11

1 K
d

dK

ds
d

=
Θ

Θ−
=

a

aφ                                  (1.19.25) 

 
and so the mixed component 1

1K  is the curvature in the 1Θ  direction.  Similarly, 2
2K  is 

the curvature in the 2Θ  direction. 
 
Assume now that 0,0 2

1
1
1 ≠= KK .  Eqn. 1.19.24 now reads 2

12
13 aa Θ−= dKd  and, 

referring Fig. 1.19.3, the twist of the surface with respect to the coordinates is  
 

1

22
1

1
1

2
12

1

a
a

a

a
K

d

dK

ds
d

=
Θ

Θ−
=

ϕ                        (1.19.26) 

 

 
 

Figure 1.19.3: Twisting over the Surface 
 
When 21 aa = , 2

1K  is the twist; when they are not equal, 2
1K  is closely related to the 

twist. 
 

 
1 this is essentially the same definition as for the space curve of §1.6.2; there, the angle s∆= κφ  

1
1aΘd

3a

1Θ

33 aa d+
3ad

ϕd

2Θ

1
1aΘd

3a

1Θ

33 aa d+

3ad

φd

1a
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Two important quantities are often used to describe the curvature of a surface.  These are 
the first and the third principal scalar invariants: 
 

βα
αβε 21

2
1

1
2

2
2

1
12

2
2

1

1
2

1
1

2
2

1
1

detIII

I

KKKKKK
KK
KK

K

KKK

i
j

i
i

=−===

+==

⋅

⋅

K

K

          (1.19.27) 

 
The first invariant is twice the mean curvature MK  whilst the third invariant is called 
the Gaussian curvature (or Total curvature) GK  of the surface. 
 
Example (Curvature of a Sphere) 
 
The surface of a sphere of radius a can be described by the coordinates ( )21 ,ΘΘ , Fig. 
1.19.4, where 
 

13212211 cos,sinsin,cossin Θ=ΘΘ=ΘΘ= axaxax  
 

 
 

Figure 1.19.4: a spherical surface 
 
Then, from the definitions 1.16.19, 1.16.27-28, 1.16.34, {▲Problem 2} 
 

2122
2

12
1

2
21

1
21

2

3
1

2
21

1
21

1

sin
1

1
cossinsinsin

sinsincoscoscos

aa

aa

eea
eeea

Θ
=

=

ΘΘ+ΘΘ−=

Θ−ΘΘ+ΘΘ+=

a

a

aa
aaa

           (1.19.28) 

           124
122

2

sin,
sin0

0
Θ=

Θ
= ag

a
a

gαβ      

 
From 1.19.6, 
 

3
1

2
21

1
21

3 cossinsincossin eeea Θ+ΘΘ+ΘΘ=              (1.19.29) 

2a

1x

2x

3x

•

2Θ

a
1Θ

1Θ

2Θ 2a

1a
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and this is clearly an orthogonal coordinate system with scale factors 
 

1,sin, 3
1

21 =Θ== hahah            (1.19.30) 
 
The surface Christoffel symbols are, from 1.18.33, 1.18.36, 

 
111

2212

1
2
21

2
12

2
22

2
11

1
21

1
12

1
11 cossin,

sin
cos,0 ΘΘ−=Γ

Θ
Θ

=Γ=Γ=Γ=Γ=Γ=Γ=Γ  

(1.19.31) 
 
Using the definitions 1.18.4, {▲Problem 3} 
 

123
22

3
21

3
12

3
11

2
32

2
23

2
31

2
13

1
32

1
23

1
31

1
13

sin,0,

1,0

0,1

Θ−=Γ=Γ=Γ−=Γ

=Γ=Γ=Γ=Γ

=Γ=Γ=Γ=Γ

aa
a

a

       (1.19.32) 

 
with the remaining symbols 03

3333
3
3

3
3 =Γ=Γ=Γ=Γ α

αα . 
 
The components of the curvature tensor are then, from 1.19.21, 1.19.19, 
 

[ ] [ ] 







Θ−

−
=

















−

−
= 12sin0

0
,10

01

a
a

K

a

aK αβ
α
β                (1.19.33) 

 
The mean and Gaussian curvature of a sphere are then 
 

2

1

2

a
K

a
K

G

M

=

−=
             (1.19.34) 

 
The principal curvatures are evidently 1

1K  and 2
2K .  As expected, they are simply the 

reciprocal of the radius of curvature a. 
■  

 
 
1.19.3 Covariant Derivatives 
 
Vectors 
 
Consider a vector v, which is not necessarily a surface vector, that is, it might have a 
normal component 3

3 vv = .  The covariant derivative is 



Section 1.19 

Solid Mechanics Part III                                                                                Kelly 190 

 

γ
γαα

α
γ

γααα

γα
γ

α

αγα
γ

αα

α
β

γα
γββ

α
β

α

vv

vvvv

vv

vvvv

vvvv

3
,

3

33
3

3
,

33

33,

3
3333,3

3
3,

|

|

|

Γ+=

Γ+Γ+=

Γ+=

Γ+Γ+=

Γ+Γ+=

,         

γ
γ
αα

αγ
γ
ααα

γ
γ
αα

αγ
γ
ααα

αβγ
γ
αββαβα

vv

vvvv

vv

vvvv

vvvv

3,3

3
3
33,33

33,

3
3

333,3

3
3

,

|

|

|

Γ−=

Γ−Γ−=

Γ−=

Γ−Γ−=

Γ−Γ−=

      (1.19.35) 

 
Define now a two-dimensional analogue of the three-dimensional covariant derivative 
through 
 

γ
γ
αββαβα

γα
γββ

α
β

α

vvv

vvv

Γ−=

Γ+=

,

,

||

||
    (1.19.36) 

 
so that, using 1.19.19, 1.19.21, the covariant derivative can be expressed as 
 

3

3

|||
|||

vKvv
vKvv

αββαβα

α
ββ

α
β

α

−=

−=
    (1.19.37) 

 
In the special case when the vector is a plane vector, then 03

3 == vv , and there is no 
difference between the three-dimensional and two-dimensional covariant derivatives.  In 
the general case, the covariant derivatives can now be expressed as 
 

( )

( ) 3
33

,

3
33

,

|||

|

|||

|

aa

av

aa

av

β
α

αββα

ββ

βα
α
ββ

α

ββ

vvKv

v

vvKv

v

i
i

i
i

+−=

=

+−=

=

    (1.19.38) 

 
From 1.18.25, the gradient of a surface vector is (using 1.19.21) 
 

( ) 3
3||grad aaaav ⊗+⊗−= α

γ
γ
α

βα
αββα vKvKv   (1.19.39) 

 
Tensors 
 
The covariant derivatives of second order tensor components are given by 1.18.18.  For 
example, 
 

3
3

3
3,

,|
ijijjijiij

imj
m

mji
m

ijij

AAAAA

AAAA

γ
λ

λγγ
λ

λγγ

γγγγ

Γ+Γ+Γ+Γ+=

Γ+Γ+=
              (1.19.40) 

 
Here, only surface tensors will  be examined, that is, all components with an index 3 are 
zero.  The two dimensional (plane) covariant derivative is 
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αλβ

λγ
λβα

λγγ
αβ

γ
αβ AAAA Γ+Γ+≡ ,||                        (1.19.41) 

 
Although 033 == αα AA  for plane tensors, one still has non-zero 
 

λβ
λγ

λβ
λγ

λβ
λγ

λβ
λγγ

β
γ

β

αλ
λγ

αλ
λγ

αλ
λγ
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α
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=

Γ=

Γ+Γ+=

=

Γ=

Γ+Γ+=

3

33
,

33

3

33
,

33

|

|

                   (1.19.42) 

 
with 0|33 =γA . 
 
From 1.18.28, the divergence of a surface tensor is 
 

3||div aaA βγ
βγαβ

αβ AKA +=        (1.19.43)  
 
 
1.19.4 The Gauss-Codazzi Equations 
 
Some useful equations can be derived by considering the second derivatives of the base 
vectors.  First, from 1.18.2, 
 

3

3
3

,

aa

aaa

αβλ
λ
αβ

αβλ
λ
αββα

K+Γ=

Γ+Γ=
                 (1.19.44) 

 
A second derivative is 
 

γαβγαβγλ
λ
αβλ

λ
γαββγα ,33,,,, aaaaa KK ++Γ+Γ=            (1.19.45) 

 
Eliminating the base vectors derivatives using 1.19.44 and 1.19.20b leads to {▲Problem 
4} 
 

( ) ( ) 3,,, aaa γαβλγ
λ
αβλ

λ
γαβ

λ
ηγ

η
αβ

λ
γαββγα KKKK +Γ+−ΓΓ+Γ=            (1.19.46) 

 
This equals the partial derivative γβα ,a .  Comparison of the coefficient of 3a  for these 
alternative expressions for the second partial derivative leads to 
 

λγ
λ
αββαγλβ

λ
αγγαβ KKKK Γ−=Γ− ,,                        (1.19.47) 

 
From Eqn. 1.18.18, 
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αλ
λ
βγλβ

λ
αγγαβγαβ KKKK Γ−Γ−= ,||              (1.19.48) 

 
and so 
 

βαγγαβ |||| KK =                                  (1.19.49) 
 
These are the Codazzi equations, in which there are only two independent non-trivial 
relations: 
 

212122112211 ||||,|||| KKKK ==    (1.19.50) 
 
Raising indices using the metric coefficients leads to the similar equations 
 

β
α
γγ

α
β |||| KK =                                  (1.19.51) 

 
The Riemann-Christoffel Curvature Tensor 
 
Comparing the coefficients of λa  in 1.19.46 and the similar expression for the second 
partial derivative shows that 
 

λ
γαβ

λ
βαγ

λ
ηγ

η
αβ

λ
ηβ

η
αγ

λ
γαβ

λ
βαγ KKKK −=ΓΓ−ΓΓ+Γ−Γ ,,                   (1.19.52) 

 
The terms on the left are the two-dimensional Riemann-Christoffel, Eqn. 1.18.21, and so 
 

λ
γαβ

λ
βαγ

λ
αβγ KKKKR −=⋅       (1.19.53) 

 
Further,   
 

γλαββλαγ
η
γληαβ

η
βληαγ

η
αβγληλαβγ KKKKKgKKgKRgR −=−== ⋅     (1.19.54) 

 
These are the Gauss equations.  From 1.18.21 et seq., only 4 of the Riemann-Christoffel 
symbols are non-zero, and they are related through 
 

2121122121121212 RRRR =−=−=           (1.19.55) 
 

so that there is in fact only one independent non-trivial Gauss relation.  Further, 
 

( )
( ) γνβρ

ν
η

ρ
µ

ρ
η

ν
µ

η
λ

µ
α

γηβµβηγµ
η
λ

µ
α

γλαββλαγλαβγ

δδδδ ggKK

ggggKK

KKKKR

−=

−=

−=

                               (1.19.56) 

 
Using 1.19.4b, 1.19.3, 
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η
λ

µ
αηµβγ

ηµβγ
η
λ

µ
α

γνβρηµ
ρνη

λ
µ
αλαβγ

εε KKg

eeKK

ggeeKKR

=

=

=

                               (1.19.57) 

 
and so the Gauss relation can be expressed succinctly as 
 

g
RKG

1212=              (1.19.58) 

 
where GK  is the Gaussian curvature, 1.19.27b.  Thus the Riemann-Christoffel tensor is 
zero if and only if the Gaussian curvature is zero, and in this case only can the order of 
the two covariant differentiations be interchanged. 
 
The Gauss-Codazzi equations, 1.19.50 and 1.19.58, are equivalent to a set of two first 
order and one second order differential equations that must be satisfied by the three 
independent metric coefficients αβg  and the three independent curvature tensor 
coefficients αβK . 
 
Intrinsic Surface Properties 
 
An intrinsic property of a surface is any quantity that remains unchanged when the 
surface is bent into another shape without stretching or shrinking.  Some examples of 
intrinsic properties are the length of a curve on the surface, surface area, the components 
of the surface metric tensor αβg  (and hence the components of the Riemann-Christoffel 
tensor) and the Guassian curvature (which follows from the Gauss equation 1.19.58). 
 
A developable surface is one which can be obtained by bending a plane, for example a 
piece of paper.  Examples of developable surfaces are the cylindrical surface and the 
surface of a cone.  Since the Riemann-Christoffel tensor and hence the Gaussian 
curvature vanish for the plane, they vanish for all developable surfaces.  
 
 
1.19.5 Geodesics 
 
The Geodesic Curvature and Normal Curvature 
 
Consider a curve C  lying on the surface, with arc length s measured from some fixed 
point.  As for the space curve, §1.6.2, one can define the unit tangent vector τ , principal 
normal ν  and binormal vector b (Eqn. 1.6.3 et seq.): 
 

α

α

axτ
ds

d
ds
d Θ

== ,     
ds
dτν

κ
1

= ,     ντb ×=    (1.19.59) 

 
so that the curve passes along the intersection of the osculating plane containing τ and ν  
(see Fig. 1.6.3), and the surface These vectors form an orthonormal set but, although ν  is 
normal to the tangent, it is not necessarily normal to the surface, as illustrated in Fig. 
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1.19.5.  For this reason, form the new orthonormal triad ( )32 ,, aττ , so that the unit vector 

2τ  lies in the plane tangent to the surface.  From 1.19.59, 1.19.3, 
 

β
α

αβα

α

aaaτaτ
ds

de
ds

d Θ
=×

Θ
=×= 332                     (1.19.60) 

 

 
 

Figure 1.19.5: a curve lying on a surface 
 
Next, the vector dsd /τ  will be decomposed into components along 2τ  and the normal 

3a .  First, differentiate 1.19.59a and use 1.19.44b to get {▲Problem 5} 
 

32

2

aaτ
ds

d
ds

dK
ds

d
ds

d
ds

d
ds
d βα

αβγ

βα
γ
αβ

γ ΘΘ
+







 ΘΘ
Γ+

Θ
=     (1.19.61) 

 
Then 
 

32 aττ
ngds

d κκ +=                                     (1.19.62) 

 
where 
 

ds
d

ds
dK

ds
d

ds
d

ds
d

ds
de

n

g

βα

αβ

βα
γ
αβ

γλ

λγ

κ

κ

ΘΘ
=








 ΘΘ
Γ+

ΘΘ
= 2

2

                (1.19.63) 

 
These are formulae for the geodesic curvature gκ  and the normal curvature nκ .  Many 

different curves with representations )(sαΘ  can pass through a certain point with a given 
tangent vector τ .  Form 1.19.59, these will all have the same value of dsd /αΘ  and so, 
from 1.19.63, these curves will have the same normal curvature but, in general, different 
geodesic curvatures. 
 

ν

C
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2x

3x

τ

x 1Θ

2Θ
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A curve passing through a normal section, that is, along the intersection of a plane 
containing τ and 3a , and the surface, will have zero geodesic curvature. 
 
The normal curvature can be expressed as 
 

τKτ=nκ                                        (1.19.64) 
 
If the tangent is along an eigenvector of K, then  nκ  is an eigenvalue, and hence a 
maximum or minimum normal curvature.  Surface curves with the property that an 
eigenvector of the curvature tensor is tangent to it at every point is called a line of 
curvature.  A convenient coordinate system for a surface is one in which the coordinate 
curves are lines of curvature.  Such a system, with 1Θ  containing the maximum values of 

nκ , has at every point a curvature tensor of the form 
 

[ ] ( )
( ) 








=








=

min

max
2
2

1
1

0
0

0
0

n

nj
i K

K
K

κ
κ

                        (1.19.65) 

 
This was the case with the spherical surface example discussed in §1.19.2. 
 
The Geodesic 
 
A geodesic is defined to be a curve which has zero geodesic curvature at every point 
along the curve.  Form 1.19.63, parametric equations for the geodesics over a surface are 
 

02

2

=
ΘΘ

Γ+
Θ

ds
d

ds
d

ds
d βα

γ
αβ

γ

                            (1.19.64) 

 
It can be proved that the geodesic is the curve of shortest distance joining two points on 
the surface.  Thus the geodesic curvature is a measure of the deviance of the curve from 
the shortest-path curve. 
 
The Geodesic Coordinate System 
 
If the Gaussian curvature of a surface is not zero, then it is not possible to find a surface 
coordinate system for which the metric tensor components αβg  equal the Kronecker delta 

αβδ  everywhere.  Such a geometry is called Riemannian.  However, it is always possible 
to construct a coordinate system in which αβαβ δ=g  , and the derivatives of the metric 
coefficients are zero, at a particular point on the surface.  This is the geodesic 
coordinate system. 
 
 
1.19.6 Problems 
 
1 Derive Eqns. 1.19.16, 03

3333
3

3 =Γ=Γ=Γ α
α . 

2 Derive the Cartesian components of the curvilinear base vectors for the spherical 
surface, Eqn. 1.19.28. 
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3 Derive the Christoffel symbols for the spherical surface, Eqn. 1.19.32. 
4 Use Eqns. 1.19.44-5 and 1.19.20b to derive 1.19.46. 
5 Use Eqns. 1.19.59a and 1.19.44b to derive 1.19.61. 
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1.A Appendix to Chapter 1 
 
 
1.A.1 The Algebraic Structures of Groups, Fields and Rings 
 
Definition: 
The nonempty set G with a binary operation, that is, to each pair of elements Gba ,  
there is assigned an element Gab , is called a group if the following axioms hold: 
1. associative law: )()( bcacab   for any Gcba ,,  
2. identity element: there exists an element Ge , called the identity element, such that 

aeaae   
3. inverse: for each Ga , there exists an element Ga 1 , called the inverse of a, 

such that eaaaa   11  
 
Examples: 
(a) An example of a group is the set of integers under addition.  In this case the binary 

operation is denoted by +, as in ba  ; one has (1) addition is associative, cba  )(  
equals )( cba  , (2) the identity element is denoted by 0, aaa  00 , (3) the 

inverse of a is denoted by a, called the negative of a, and 0)()(  aaaa  

 
Definition: 
An abelian group is one for which the commutative law holds, that is, if baab   for 
every Gba , . 
 
Examples: 
(a) The above group, the set of integers under addition, is commutative, abba  , 

and so is an abelian group. 
 
Definition: 
A mapping f of a group G to another group G , GGf : , is called a homomorphism 
if )()()( bfafabf   for every Gba , ; if f is bijective (one-one and onto), then it is 
called an isomorphism and G and G  re said to be isomorphic 
 
Definition: 
If GGf :  is a homomorphism, then the kernel of f is the set of elements of G which 

map into the identity element of G ,  eafGak  )(|  
 
Examples 
(a) Let G be the group of non-zero complex numbers under multiplication, and let G  

be the non-zero real numbers under multiplication.  The mapping GGf :  

defined by zzf )(  is a homomorphism, because 

)()()( 21212121 zfzfzzzzzzf   

The kernel of f is the set of elements which map into 1, that is, the complex numbers 
on the unit circle 
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Definition: 
The non-empty set A with the two binary operations of addition (denoted by +) and 
multiplication (denoted by juxtaposition) is called a ring if the following are satisfied: 
1. associative law for addition: for any Acba ,, , )()( cbacba   
2.  zero element (additive identity): there exists an element A0 , called the zero 

element, such that aaa  00  for every Aa  
3. negative (additive inverse): for each Aa  there exists an element Aa , called 

the negative of a, such that 0)()(  aaaa  
4. commutative law for addition: for any Aba , , abba   
5. associative law for multiplication: for any Acba ,, , )()( bcacab   
6. distributive law of multiplication over addition (both left and right distributive): for 

any Acba ,, , (i) acabcba  )( , (ii) cabaacb  )(  
 
Remarks:  
(i) the axioms 1-4 may be summarized by saying that A is an abelian group under 

addition 
(ii) the operation of subtraction in a ring is defined through )( baba   
(iii) using these axioms, it can be shown that 000  aa , abbaba  )()( , 

abba  ))((  for all Aba ,  
 
Definition: 
A commutative ring is a ring with the additional property: 
7. commutative law for multiplication: for any Aba , , baab    
 
Definition: 
A ring with a unit element is a ring with the additional property: 
8. unit element (multiplicative identity): there exists a nonzero element A1  such that 

aaa  11  for every Aa  
 
Definition: 
A commutative ring with a unit element is an integral domain if it has no zero divisors, 
that is, if 0ab , then 0a  or 0b   
 
Examples: 
(a) the set of integers Z is an integral domain 
 
Definition: 
A commutative ring with a unit element is a field if it has the additional property: 
9. multiplicative inverse: there exists an element Aa 1  such that 111   aaaa  
 
Remarks:  
(i) note that the number 0 has no multiplicative inverse.  When constructing the real 

numbers R, 0 is a special element which is not allowed have a multiplicative inverse.  
For this reason, division by 0 in R is indeterminate 
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Examples: 
(a) The set of real numbers R with the usual operations of addition and multiplication 

forms a field  
(b) The set of ordered pairs of real numbers with addition and multiplication defined by 

),(),)(,(

),(),(),(

bcadbdacdcba

dbcadcba




 

is also a field - this is just the set of complex numbers C 
 
 
1.A.2 The Linear (Vector) Space 
 
Definition: 
Let F be a given field whose elements are called scalars.  Let V be a non-empty set with 
rules of addition and scalar multiplication, that is there is a sum ba   for any Vba ,  
and a product a  for any Va , F .  Then V is called a linear space over F if the 
following eight axioms hold: 
1. associative law for addition: for any Vcba ,, , one has )()( cbacba   
2. zero element: there exists an element V0 , called the zero element, or origin, such 

that aaa  00  for every Va  
3. negative: for each Va  there exists an element Va , called the negative of a, 

such that 0)()(  aaaa  
4. commutative law for addition: for any Vba , , we have abba   
5. distributive law, over addition of elements of V: for any Vba ,  and scalar F , 

baba   )(    
6. distributive law, over addition of scalars: for any Va  and scalars F , , 

aaa   )(  
7. associative law for multiplication: for any Va  and scalars F , , 

aa )()(    
8. unit multiplication: for the unit scalar F1 , aa 1  for any Va . 
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1.B Appendix to Chapter 1 
 
 
1.B.1 The Ordinary Calculus 
 
Here are listed some important concepts from the ordinary calculus. 
 
The Derivative 
 
Consider u, a function f of one independent variable x.  The derivative of u at x is defined 
by 
 

   
x

xfxxf

x

u
xf

dx

du
xx 







  00 limlim)(                  (1.B.1) 

 
where u  is the increment in u due to an increment x  in x. 
 
The Differential 
 
The differential of u is defined by 
 

xxfdu  )(                                                  (1.B.2) 
 
By considering the special case of xxfu  )( , one has xdxdu  , so the 
differential of the independent variable is equivalent to the increment. xdx  .  Thus, in 
general, the differential can be written as dxxfdu )( .  The differential of u and 
increment in u are only approximately equal, udu  , and approach one another as 

0x .  This is illustrated in Fig. 1.B.1. 
 

 
 

Figure 1.B.1: the differential 
 
If x is itself a function of another variable, t say,   txu , then the chain rule of 
differentiation gives 
 

differential
slope 

xdx 

xdx 

x

)()( xfxxfu 

)(xf  du
u

increment
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dt

dx
xf

dt

du
)(                                                    (1.B.3) 

 
Arc Length 
 
The length of an arc, measured from a fixed point a on the arc, to x, is, from the definition 
of the integral, 
 

  dxdxdydxdss
x

a

x

a

x

a
  2/1sec                            (1.B.4) 

 
where   is the angle the tangent to the arc makes with the x axis, Fig 1.B.2, with 

tan)/( dxdy  and      222 dydxds   ( ds  is the length of the dotted line in Fig. 
1.B.2b).  Also, it can be seen that 
 

   

1

lim

limlim

22
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ds
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pq

pq

s

ss

                            (1.B.5) 

 

so that, if the increment s  is small,      222 yxs  . 
 

 
 

Figure 1.B.2: arc length 
 
The Calculus of Two or More Variables 
 
Consider now two independent variables, ),( yxfu  .  We can define partial 
derivatives so that, for example, 
 

x



a

s

(a) (b) 

s

ds

xdx 

dy

y

p

q
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x

yxfyxxf

x

u

x

u
x

y
x 












),(),(

limlim 0
constant 

0             (1.B.6) 

 
The total differential du  due to increments in both x and y can in this case be shown to 
be 
 

y
y

u
x

x

u
du 








                                      (1.B.7) 

 
which is written as    dyyudxxudu  // , by setting ydyxdx  , .   Again, 
the differential du  is only an approximation to the actual increment u  (the increment 
and differential are shown in Fig. 1.B.3 for the case 0 ydy ). 
 
It can be shown that this expression for the differential du  holds whether x and y are 
independent, or whether they are functions themselves of an independent variable t, 

 )(),( tytxuu  , in which case one has the total derivative of u with respect to t, 
 

dt

dy

y

u

dt

dx

x

u

dt

du








                                     (1.B.8) 

 

 
 

Figure 1.B.3: the partial derivative 
 
 
The Chain rule for Two or More Variables 
 
Consider the case where u is a function of the two variables yx, , ),( yxfu  , but also 

that x and y are functions of the two independent variables s and t,     tsytsxfu ,,, .  
Then 
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But, also, 
 

dt
t

u
ds

s

u
du








                                    (1.B.10) 

 
Comparing the two, and since dtds,  are independent and arbitrary, one obtains the chain 
rule 
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                                  (1.B.11) 

 
In the special case when x and y are functions of only one variable, t say, so that 

 )(),( tytxfu  , the above reduces to the total derivative given earlier. 
 
One can further specialise:  In the case when u is a function of x and t, with )(txx  , 

 ttxfu ),( , one has 
 

t

u

dt

dx

x

u

dt

du








                                    (1.B.12) 

 
When u is a function of one variable only, x say, so that  )(txfu  , the above reduces to 
the chain rule for ordinary differentiation. 
 
Taylor’s Theorem 
 
Suppose the value of a function ),( yxf  is known at ),( 00 yx .  Its value at a neighbouring 

point ),( 00 yyxx   is then given by 
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The Mean Value Theorem 
 
If )(xf  is continuous over an interval bxa  , then 
 

ab

afbf
f




 )()(
)(                                         (1.B.14) 

 
Geometrically, this is equivalent to saying that there exists at least one point in the 
interval for which the tangent line is parallel to the line joining )(af  and )(bf .  This 
result is known as the mean value theorem. 
 

  
 

Figure 1.B.4: the mean value theorem 
 
The law of the mean can also be written in terms of an integral: there is at least one point 
  in the interval  ba,  such that 
 

dxxf
l

f
b

a
 )(

1
)(                                         (1.B.15) 

 
where l is the length of the interval, abl  .  The right hand side here can be interpreted 
as the average value of f over the interval.  The theorem therefore states that the average 
value of the function lies somewhere in the interval.  The equivalent expression for a 
double integral is that there is at least one point  21 ,  in a region R such that 
 

212121 ),(
1

),( dxdxxxf
A

f
R
                            (1.B.16) 

 
where A is the area of the region of integration R, and similarly for a triple/volume 
integral. 
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1.B.2 Transformation of Coordinate System 
 
Let the coordinates of a point in space be  321 ,, xxx .  Introduce a second set of 

coordinates  321 ,,  , related to the first set through the transformation equations 

 
 321 ,, xxxfii      (1.B.17) 

 
with the inverse equations 
 

 321 ,,  ii gx     (1.B.18) 

  
A transformation is termed an admissible transformation if the inverse transformation 
exists and is in one-to-one correspondence in a certain region of the variables  321 ,, xxx , 

that is,  each set of numbers  321 ,,   defines a unique set  321 ,, xxx  in the region, 

and vice versa.   
 
Now suppose that one has a point with coordinates 0

ix , 0
i  which satisfy 1.B.17.  Eqn. 

1.B.17 will be in general non-linear, but differentiating leads to 
 

j
j

i
i dx

x

f
d




 ,                                           (1.B.19) 

 
which is a system of three linear equations.  From basic linear algebra, this system can be 
solved for the jdx  if and only if the determinant of the coefficients does not vanish, i.e 

 

0det 
















j

i

x

f
J ,                                        (1.B.20) 

 
with the partial derivatives evaluated at 0

ix  (the one dimensional situation is shown in 

Fig. 1.B.5).  If 0J , one can solve for the idx : 

 

jiji dAdx  ,                                            (1.B.21) 

 
say.  This is a linear approximation of the inverse equations 1.B.18 and so the inverse 
exists in a small region near  0

3
0
2

0
1 ,, xxx .  This argument can be extended to other 

neighbouring points and the region in which 0J  will be the region for which the 
transformation will be admissible.  
 
If the Jacobian is positive everywhere, then a right handed set will be transformed into 
another right handed set, and the transformation is said to be proper. 
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Figure 1.B.5: linear approximation 
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