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8.2 Stress Analysis for Plasticity 
 
 
This section follows on from the analysis of three dimensional stress carried out in §7.2.  
The plastic behaviour of materials is often independent of a hydrostatic stress and this 
feature necessitates the study of the deviatoric stress. 
 
 
8.2.1 Deviatoric Stress 
 
Any state of stress can be decomposed into a hydrostatic (or mean) stress Imσ  and a 
deviatoric stress s, according to 
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where 
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and 
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(8.2.3) 
 
In index notation, 
 

ijijmij s+= δσσ                                             (8.2.4) 
 
In a completely analogous manner to the derivation of the principal stresses and the 
principal scalar invariants of the stress matrix, §7.2.4, one can determine the principal 
stresses and principal scalar invariants of the deviatoric stress matrix.  The former are 
denoted 321 ,, sss  and the latter are denoted by 321 ,, JJJ .  The characteristic equation 
analogous to Eqn. 7.2.23 is 
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3 =−−− JsJsJs           (8.2.5) 

 
and the deviatoric invariants are (compare with 7.2.24, 7.2.26)1 
                                                 
1 unfortunately, there is a convention (adhered to by most authors) to write the characteristic equation for 
stress with a σ2I+  term and that for deviatoric stress with a sJ 2−  term; this means that the formulae for 

J2 in Eqn. 8.2.5 are the negative of those for 2I  in Eqn. 7.2.24 
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Since the hydrostatic stress remains unchanged with a change of coordinate system, the 
principal directions of stress coincide with the principal directions of the deviatoric stress, 
and the decomposition can be expressed with respect to the principal directions as  
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Note that, from the definition Eqn. 8.2.3, the first invariant of the deviatoric stress, the 
sum of the normal stresses, is zero: 
 

01 =J            (8.2.8) 
 

The second invariant can also be expressed in the useful forms {▲Problem 3} 
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and, in terms of the principal stresses, {▲Problem 4} 
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Further, the deviatoric invariants are related to the stress tensor invariants through 
{▲Problem 5} 
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A State of Pure Shear 
 
The stress state at a point is one of pure shear if for any one coordinate axes through the 
point one has only shear stress acting, i.e. the stress matrix is of the form 
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Applying the stress transformation rule 7.2.16 to this stress matrix and using the fact that 
the transformation matrix Q is orthogonal, i.e. IQQQQ == TT , one finds that the first 
invariant is zero, 0332211 =′+′+′ σσσ .  Hence the deviatoric stress is one of pure shear. 
 
 
8.2.2 The Octahedral Stresses 
 
Examine now a material element subjected to principal stresses 321 ,, σσσ  as shown in 
Fig. 8.2.1.  By definition, no shear stresses act on the planes shown. 
 

 
 

Figure 8.2.1: stresses acting on a material element 
 
Consider next the octahedral plane; this is the plane shown shaded in Fig. 8.2.2, whose 
normal an  makes equal angles with the principal directions.  It is so-called because it cuts 
a cubic material element (with faces perpendicular to the principal directions) into a 
triangular plane and eight of these triangles around the origin form an octahedron.  
 

 
 

Figure 8.2.2: the octahedral plane 
 

Next, a new Cartesian coordinate system is constructed with axes parallel and 
perpendicular to the octahedral plane, Fig. 8.2.3.  One axis runs along the unit normal an ; 
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this normal has components ( )3/1,3/1,3/1  with respect to the principal axes.  The 
angle 0θ  the normal direction makes with the 1 direction can be obtained from 

01 cosθ=⋅en a , where ( )0,0,11 =e  is a unit vector in the 1 direction, Fig. 8.2.3.  To 
complete the new coordinate system, any two perpendicular unit vectors which lie in 
(parallel to) the octahedral plane can be chosen.  Choose one which is along the 
projection of the 1 axis down onto the octahedral plane.  The components of this vector 
are {▲Problem 6} ( )6/1,6/1,3/2 −−=cn .  The final unit vector bn  is chosen so 
that it forms a right hand Cartesian coordinate system with an  and cn , i.e. cba nnn =× .  
In summary, 
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Figure 8.2.3: a new Cartesian coordinate system 
 
To express the stress state in terms of components in the cba ,,  directions, construct the 
stress transformation matrix: 
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and the new stress components are 
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Now consider the stress components acting on the octahedral plane, acabaa σσσ ,, , 
Fig. 8.2.4.  Recall from Cauchy’s law, Eqn. 7.2.9, that these are the components of 
the traction vector )( ant  acting on the octahedral plane, with respect to the (a,b,c) 
axes: 
 

cacbabaaa
a nnnt n σσσ ++=)(                      (8.2.16) 

 

 
 

Figure 8.2.4: the stress vector σ  and its components 
 
The magnitudes of the normal and shear stresses acting on the octahedral plane are called 
the octahedral normal stress octσ  and the octahedral shear stress octτ .  Referring to 
Fig. 8.2.4, these can be expressed as {▲Problem 7} 
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The octahedral normal and shear stresses on all 8 octahedral planes around the origin are 
the same. 
 
Note that the octahedral normal stress is simply the hydrostatic stress.  This implies that 
the deviatoric stress has no normal component in the direction an  and only contributes to 
shearing on the octahedral plane.  Indeed, from Eqn. 8.2.15,  
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The σ ’s on the right here can be replaced with s ’s since jiji ss −=−σσ . 
 
 
8.2.3 Problems 
 
1. What are the hydrostatic and deviatoric stresses for the uniaxial stress 011 σσ = ?  

What are the hydrostatic and deviatoric stresses for the state of pure shear τσ =12 ?  
In both cases, verify that the first invariant of the deviatoric stress is zero: 01 =J . 

 

2. For the stress state 
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, calculate 

(a) the hydrostatic stress 
(b) the deviatoric stresses 
(c) the deviatoric invariants 

 
3. The second invariant of the deviatoric stress is given by Eqn. 8.2.6,  

( )1332212 ssssssJ ++−=  
By squaring the relation 03211 =++= sssJ , derive Eqn. 8.2.9, 
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4. Use Eqns. 8.2.9 (and your work from Problem 3) and the fact that 2121 ss −=−σσ , 

etc. to derive 8.2.10, 
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5. Use the fact that 03211 =++= sssJ  to show that 
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Hence derive Eqns. 8.2.11, 
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6. Show that a unit normal cn  in the octahedral plane in the direction of the projection 

of the 1 axis down onto the octahedral plane has coordinates ( )
6

1
6

1
3
2 ,, −− , Fig. 

8.2.3.  To do this, note the geometry shown below and the fact that when the 1 axis is 
projected down, it remains at equal angles to the 2 and 3 axes. 
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7. Use Eqns. 8.2.15 to derive Eqns. 8.2.17.  
 
8. For the stress state of problem 2, calculate the octahedral normal stress and the 

octahedral shear stress 


