8 2-D FEM: Poisson’s Equation

Here, the FEM solution to the 2D Poisson equation is considered.

Poisson’s Equations:

2 2

0 0
Vip=v.Vp=2Li 2L _ r(yy)

= 8.1
ox® oy’ ®-1)
and the special case of Laplace’s equation.
Laplace’s Equations:
2 82
v2pzv-vp:a§’+ayf=o (8.2)
8.1 Solution using Q4 elements
8.1.1 Example 1: Laplace’s Equation with One Element
y
Consider Laplace’s equation over the 4
. (_a9+b) (+a,+b)
rectangular region —a<x<+a,
—b < y <+b, with boundary conditions
X
P =1, p(x,+b)=0
D ey
a o, @
OX| (a1 OX|(a)
(_aa_b) (+aa_b)

The exact solution is the linear function
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p =y—>b and thus the problem can be solved exactly using just one Q4 element, the one

shown here.

The weighted residual integral equation is

[[(V-Vp)ods =0 (8.3)

and the weak form is (this is one of Green’s identities — the two dimensional “integration by

parts” — see the Appendix to this Chapter)

[(vp-m)wdC - [[(Vp-Vaolis =0 (8.4)

C

Here Vp-n is the normal component of the vector Vp, and this quantity multiplied by @ is

integrated around the boundary C of the element. The normal is taken outward from the

boundary, so for example if one is integrating along the edge 1-2, n points in the negative y
direction. The notation Op/on is often used for this scalar Vp-n. Thus

+b+a

[ [(vp-Veo)xdy = | P pic (8.4)
—b—a C 8”
Using the linear interpolation
4
p(xay):zpiNi (8.5)
i=1
one has
4 +b+a( )J ap
| |\VN,-VN . Hxdy =|-—N.dC, =1...4 8.6
i:lp‘_j,,_{ ;" VN pxdy lan J J (8.6)

In terms of base vectors e, e ) the gradients can be written as
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1

VN, =——|-(b-v)e. —(a—x)e
: 4({})[( e, —(a-xe,]
VN, =——[+(b-y)e, —(a+x)e, |
4?5[ | (8.7)
VN, =——\+(b+y)e, +(a+x)e
3 461117 (b+yle, +(a+xe,
VN, =——|-(b+y)e, +(a—x)e
=Gy +@-ve ]
and the integrals result in a symmetric matrix:
+b+a
[ [N, VN, Jixdy =K, (8.8)
—b-a
where
2a° +2b° a’-2b° —a’-b> 24 +b’
1 2a° +2b* -2a*+b> -a’-b’
rect:_ 2 2 2 2 (8'9)
6ab 2a° +2b a” —2b
2a* +2b°

Examining the boundary integrals,

ja—pa)dc - ja—pzv,dc1 + ja—pN,dc2+ ja—pzv,dc3+ ja—pzv,dq (8.10)
1-2 on - 2-3 on - 3-4 on - 4-1 on -

v.on
where C, is the first edge, joining nodes 1 and 2 of the element, etc. As discussed in Chapter

6, two of these integrals on the right hand side will be zero for any given shape function N .

The right hand side boundary vector is thus
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j‘a—pz\/larc1 + ja—ledQ
2, 0n L, on
ap op
[ Z=N,dC, + [ =N, dC,
op 2, 0n ;. 0n
| an A= op
con [ =N, dC, + [ Z=N,dc,
on ;. 0n

2-3

(8.11)

| a—pN4dC3 + a—pN4dC4
on ;. 0n

L3-4 _

Homogeneous natural boundary conditions are applied along 2-3 and 4-1 and so these

boundary integrals are zero. For the non-homogeneous natural boundary condition one needs

to evaluate

J. 8—];N1dCl = J-(_ a_pJN1|y__bdx = —i]ﬁ:(a —x)dx =—a

0
2 o (8.12)
ap B +a ap B 1 +a B
1jza—ndeCl = J; —5jN2|y_bdx = —Zj;(a +Xx)dx =—a
leading to the system of equations
K..p=f (8.13)
where p=[p,,p,, s> p.]"» K, is given above, and
5 J '
f=|-a -a [ZLNdc, [ZLN,dc, (8.14)
;. on ;. 0on
Finally, applying the essential boundary condition p(x,+b) =0 leads to
1 |2a*+2b> a’-2b || p, | —a
6ab| a* —2b> 24 +2b* | p, -a
(8.15)

>[5
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which is the exact solution. Note that, computationally, one would not reduce the order of the

matrix as done above; it is easier to amend the 4 x4 matrix to include the essential boundary

conditions, as shown here:

2a* +2b> a*-2b> 0 O p, —a

1 2a°+2> 0 0|p,| |-a
6ab| 0 0 1 0|p| |0
0 0 0 1]p.] |0

(8.16)

and then to solve. Putting the obtained values of p back into the un-amended system of

equations leads to expressions for line integrals along edge 3-4:

a= J-a—pN3dC3 = ja—p N3| 7+b(—dx):i P (a+ x)dx
3-4 al’l +a ay 3-4 . 2a —a ay 3-4
a= j a—pN4dC3 = I@_p N4|y:+b(—a’x):i P (a—x)dx
i2q On Vi, 2a 50|, ,
from which one can see that
@ _
i A

which is again the exact solution.

Note that
4
Vp = ZinNi =e,
il

which is also the exact solution.

Different boundary conditions can be taken, for example the set
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(8.18)
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P»

o, @
Oy

o @
(x.-b) 0y

=1, p(+a,y)=0
ox

(=a,y)

(x,+b)

has the exact solution p = x —a and the single Q4 element FE equations are, with

X=—a

-b
| Py ac, - jb(— Z—ile

. on

9 HE)
| a—iN4dC4 = jb (—a—i)m

4-1

1 +b
Cdy)=—g5 J -y =

3

1 +b
—dy)=—— [(b+ y)dy = b
ay) 2b_fb( y)dy
and
g 8 '
K.p=f f=|-b [LnNac, [LNdc, -b
2 on 2 0n

where K __, is as before. Applying the essential boundary condition then leads to

1 | 2a*>+2b> -2a°+b | p | |-b
6ab|—2a* +b*> 2a*>+2b* | p, -b

o[

rect

which is the exact solution.

8.1.2 Example 2: Poisson’s Equation with Local Coordinates

(8.20)

(8.21)

(8.22)

(8.23)

Consider Poisson’s equation, with f =1 in (8.1), over the same rectangular region as for

Example 1. The weak form of the weighted integral is now

[[(Vp-Vols = [(Vp-n)edC - [[wds
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Using the linear interpolation p(x,y) = Z p;N, one has

1

ip,.jj(vzv[ VN, JS = jg—’;dec—gdeS, j=1...4 (8.25)

i=l1 S C

Transforming the surface integrals into integrals over the local coordinates, one has

So | [N, 9N,V agin = IadeC J Noazn =14 520

I=1n1§1 n=—1£&=-1

where J is the Jacobian of the transformation, J = |J | = |N dx| .

To write the integrands in local coordinates, note that

oN,  oN, ON, 0N, N,
oN, aNey]'[ e LN, y]:aNl NN o

VN, VN, =| Lie ) e N
/ (Gx oy ox oy ox Ox 0Oy Oy

When the element edges are aligned with the global x, y axis, these can be evaluated exactly:

VA, VN_LaNE?N 1 ON, ON,
_a’ o0& o¢ b2 on on
=) (=¢f  (-n) (-£)1+¢)
a’ b? a’ b?
gt onf ey
16 a2 b2
) _(=n)ien) (-8)+e)  (-pli+n) (-&F
a’ b* a’ b*
=n)ien) (487 (Q-n)i+n) (1=£)1+¢)
Geny (28 Wonf -ghie)
1+7) (1+¢&) 1+7) (1-&)1+¢&
+ a? M - a? + b2 (8.28)
(+9) , (-
a’ b? i
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Carrying out the integration leads to

+1 4+l +1 +l

1
[ [N, VN, Vadn=XK,,. [ [NJdén=ab 1 (8.29)
1

n=-1&=-1 n=-1&=-1

where K __, is the same coefficient matrix as encountered in Example 1.

rect

8.1.3 Example 3: A Two-element Problem

As a further example, consider again the Poisson’s equation of Example 2 over the rectangular
region —a < x <+a, —b < y <+b, with boundary conditions

P =1, p(x,+b) =0, 24 =0, 22 =0 (8.30)
W xot) OX| (a1 X (10,1)
The exact solution is the quadratic function p =4 Y2 +(1+b)y—b(1+ 3b).
y
The problem will be solved using one element > 6
. . . (_a9+b) 4 3 (+a9+b)
spanning the x direction and two elements
spanning the y direction, as shown. 2
1
The complete symmetric system of equations for 3|4 3| 4
this two-element mesh is (note that in what 1
follows, the b, the element “half-height” is now
. 7 — 2
replaced with b =b/2) (—a.—b) 1 (+a.-b)
1 2

Kp=f

where p=[p, p, p, p, ps b and

206



(24> +2b%  a*-2b> -2a*+b’ -a*-b’

2a> +2b* —a’>-b> —2a*+b>

ko L 4a’ +4b* 2a* —4b°
6ab 4a’ +4b*

j‘l‘l’zvlarc1 + Ia—ledQ
2, 0n >, on

J elem1

elem1

-2

Ia—pdeCI + | a—pdeCZ
on 7, 0n

1-2

j@mwﬁj@mw4 +
3-4 a elem1 1-2 an

(IZdeC +jadec
2-3 3-

y
!

on

j dec +j dec]

elem?2
j pN dc, + j§N4dC4
4-1

elem2

jfl”zvlarc1 + Ia—ledC
on
4-1

+ ja—pzvzdc1 + | él”dec
ceml  \I-2 2 On

0

0
—2a>+b?
—a’-b*?

2a* +2b°2

4 J
elem2
2 j
elem?2

—2a*+b*

0
0

—a*-b?

a’ —2b?
2a’ +2b° |
(8.31)

(8.32)
—ab

\
—_— = NN =

From the above, with the normal derivatives constant, the boundary integrals for both

elements are given by

. [Ndc, =

3-4

[Ndc, = [N,dc, =
2-3

S O { {
(=TS NS N )

I & O O

4-1

[N,dc, =

(8.33)

> o o o

The homogeneous natural boundary conditions imply that the line integrals along edges 2-3

and 4-1 are zero for both elements.

8p/8y|(x’_b) =1, s0 8[9/871|1_2

Note that the integrals over the internal edge cancel out:
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The non-homogeneous natural boundary condition,
—a 0 0].



0 0
0 0
(ja—pzvjdq] +(ja—pzvjdclj :(8_[) j ¢ +(6—p ] 120 (8.34)
3-4 al’l eleml 1-2 al’l elem?2 al’l 3-4 / elem1 a 8” 1-2 / elem 2 a
0 0
The remaining boundary integral leads to
0
0
(a—p j (8.35)
a]’l 3-4 /elem?2 a
a
Thus
_ ., -
—a (1]
0 1
— 2
t= (. 0 b (8.36)
S| |
an 3-4 /clem2 1
a[ap ] 1]
L an 3-4 elem?2 _|
Applying the essential boundary conditions finally leads to the system
2¢> +2b% a*-2b% -2a*+b> -—-a*-b*? )2 —-a 1
. 2 2 2_2 _ 2__2 _2 2 7.2 _ . 1
L @t2bt mar=b e b Py 174 p T (83)
6ab 4a”+4b° 2a°—4b° | p; 0 2

4a* +4b° | p, 0 2

which has the solution
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2 —2b(1+b)

—-2b(1+b
Py | _ ( ) (8.38)
D; —-b(1+3b/2)
D4 —-b(1+3b/2)

which are the exact values at the nodes (although the FE solution is linear between the nodes

and the exact solution is quadratic).

With the p’s now known, the normal derivative between nodes 5 and 6 can be determined,

(a_p j _%
an 3-4 /elem?2 8}7

giving

=1+2b (8.39)

y=+b

which is also the exact solution.

The exact gradient is linear: Vp =(1+b+ y)e, The FE gradients are constant (the subscripts

on the p’s here are local element numbering)

4
i=1
_i 10N, .  LoN,
2P\ o &y an &
1
Element 1: =£[P1(—1+77)+p2(+1—77)+p3(+1+77)+p4(—1—77)]ex

+%[pl(—l+§)+p2(—1—§)+p3(+1+§)+p4(+1_§)]ey

= {1 +%b}e),
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4
Vp :::E:l%‘7pvi
i=1
& (10N, 1 6N,
:zpl __ex+:_ey
i=1 a 0 b on
1
Element 2: =E[p1<—1+n)+p2<+1—n>+p3(+1+n>+p4<—1—n>]ex

r Ll 18 na1-D) o1+ 1=,

={1+%b}e},

These gradients are the average of the exact linear gradients over each element, they are exact

at the element-centres and they are not continuous across the element boundary.

8.2 Solution using Rotated Nonconforming Q1 elements

First, re-consider the example 1 with exact solution p = y—b. Again using one element with

the element edges aligned with the global x, y axis, one has

+1 +1

[ [N, VN,V dédn =K ..
=1

n=-lg¢=

where now the symmetric coefficient matrix is

+37a* +65b* —37a* =37b* +37a° +9b* —37a*>-37b°
1 +65a* +37b* —=37a* -37b*> +9a* +37b*

K reet = >%ab +37a% +65b> —37a>—37h°
+65a° +37b°

leading to the system of equations K .p =f where p=[p,,p,,p;,»,]" and

f{o +2a 2

T
2 0 —2a}
0 ¢

n

Finally, applying the essential boundary condition p(x,+b) =0 leads to
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+37a’> +9b>  +37a’ +65b> -37a° -37b° | p, |=
28ab| _374* ~37p* -37a> -37b* +65a° +37b% | p,

Py -b
—>| py|=| —b
n —2b

which is the exact solution. The solution is exact between the nodes; although the

1 +37a*> +65b>  +37a*+9b> —37a*-37b* | p, {o}
0

interpolation functions are not linear, due to cancellation of terms one arrives at

4
p0,y)= ZP,-N,- = —b[N1 + N, +2N4]=b—y for any x (8.44)
i=1

Putting the solution back into the original system of equations, from the second equation one
finds that dp/ 8n| . =1, which is the exact solution. Finally,

- d 1 ON, 1 ON,
Vp = VN, = | ———e +——e |=e, 8.45
p ;pz i ;pl(a ﬁé: x b 877 }’J Y ( )
which is also exact.
Y
7
Next look at the two-element problem of (—a,+b) ) (+a,+b)
example 3, with exact solution
p=1y> +(1+b)y—b(1+3b). The mesh is 63 2 115
now as shown. 4 |4 ¥
2
The symmetric system of equations for this two- 343 1 142
element mesh is now (again b =b/2) Kp=f
4
Where p=[p, p, ps Pi Ps Ps P:]  (—ab) - (+a,—b)
and
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K= —
28ab

+9a” +37h°
—~37a*> -37b°
~37a* -37h°

+130a’ +74b 2

and

(650> +37b% —37a> -37b> —37a> -37b>
+37a” +65b°

+37a’ +9b°
+37a*> +65b°

0 0
0 0
0o 0o
—37a*>-37b* —37a*-37b"

+37a> +9b>

+37a”> +65b° )’
: +37a”> +65b°

2
0
0
0 —ab
0
0

— = N

Applying the essential boundary condition p, =0 finally leads to the system

654> +37h°

28ab

—37a*> -37b°
+37a* +65b°

P
P>
P
Py
Ds
L P |

374> -37b* +9a’ +37b°

+37a>+9b% —37a> -37b°

+37a% +65b% —37a” -37b°
+130a” +74b°

—ab

—_— N =

|
SO

which has the solution (compared to the exact solution)
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0
0
0 _
+9a” +37h°
~37a*> -37b°
~37a*> -37b°
+65a> +37b7 |
(8.46)
(8.47)
0 0
0 0
0o 0o
~37a> -37b> —37a*>-37b°
+37a’ +65b°  +37a> +9b°

+37a” +65b° |

(8.48)



~2b(1+0) ] [ —2b(1+b) ]
156 2 b2
2 N 2 3.5,
p,=p 2 4 4(1 +b2 pP,=p 2 8
FE 5,17 ~b(1+3b/2) > Bxact 172 = 01 36/2)
p =4p 500 b? p =4p
5 6 —bl ibma + 5 6 b( L7 bj
2 4 4a*+b? 2

(8.49)

With the p’s now known, the normal derivative between nodes 5 and 6 can be determined,

giving

=1+2b

y=+b

P _r
6n G elem2 ay

which is the exact solution (even though the inexact p, and p, are used to calculate it).

The exact gradient is linear: Vp =(1+b+ y)e, The FE gradients are

=X
Sof:

Element 1: 16N r+L%e
1 © b On g
7 ab2 14  a’b 1
= ——5—=3¢-10 %7 (3p-10n°)+1+=ble
[3742 be-t02)e, o2 fon-r0p ) Dol
4
Z
Element 2: z 1 8N i%e
b on ’
7 ab® 14  a’b 3
= ———  (3¢-10&%)le. +|-———— By —107° J+1+=b |e
[374a2+b2(§ 5)} [3742 bz(" ') 2}y

(8.50)

These gradients are exact at the element-centres and they are not continuous across the

element boundary.
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8.3 Solution using Linear Triangular Elements

8.3.1 Example 4: Laplace’s Equation

Consider Laplace’s equation, as in Example 1 only now over the rectangular region 0 < x < a,

0 < x < b, with boundary conditions

Pl phy-0, 2

=0 (8.51)
oy x0) ox

whose exact solution is again the linear function p = y —b, with dp/0dy =1. Using the linear

interpolation Z; p;N,; 1in the weighted integral (8.4) leads to

2AZ3: », j 1f(vzv,. YN Jindé = | 2—pa)dC (8.52)
i=1 =0 £=0 C n

Since the elements are linear, this integrand is constant for any given element:

aN[ aN./’ 8Ni a]\/j

Yy Vs X, =X,
1
"y Da=v vi=v v=wltlm=x -2 x—% x-x]
Y= X, — X,

(8.53)

Using the two elements shown below, with _[ l OJ‘;_jd nd& =1/2, the local element matrices are
n= =

1 b2 —b2 0 1 az 0 —a2
eleml — A~ 7 _b2 az +b2 _az H elem 2 0 b2 _b2 (854)
2ab| ¢ -a’ a’ 2ab| _ g2 _p* 4?4 b2
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and the assembled global matrix is

a’+b* -b* —a’ 0
1 —b? a’+b? 0 —a’
T 2ab| -a? 0  a’+b>  -b (8:33)
0 —a’ —b? a’+b?

The natural boundary condition leads to the right hand side

Dsl3 2 ; 7. vector
2
1 0
p'=0 p'=0 | 0
1 f=_9 adp (8.56)
’ 200 2dy|,,|1
A 2 D, , 1

00 P'=1 (a0

Applying the essential boundary condition, p, = p, =0, leads to the solution p, = p, =-b
and (Gp/ ay)(xﬂ,,) =1 which is the exact solution.

Consider now the evaluation of the gradient Vp throughout both elements. One has (the

subscripts are now local node numbers)

P, — P e

Element 1: Vp =

Element 2: Vp = e + e =e

Which is the exact solution. The gradient is a constant vector and, in this simple example, the

gradient is continuous across the element boundary.

8.3.2 Example 5: Poisson’s Eqn.
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Consider here Poisson’s equation over the rectangular region 0<x<a, 0<y<b. The

element equations are

> . [(VN,)- (VN Jis ==[ NS + [ (Vp )N, dC (8.57)

S

Constant f

Cr

For the case of constant £, the equations become

> . [(VN,)- (VN his = - f%+ [Vp -m)N,dc (8.58)

S

Consider the boundary conditions

P02l o, P4 pay)=0 (8.59)
6y (x,0) ay (x,b) ox 0,)
which give the exact solution (a quadratic in x)
__l ( 2 2)—A _ ' _ y
pxy) == fla’ =¥ )= dla—-x),  p'tx.y)=fi+ (8.60)

©0,) P =0 (ab)

JZAK] 23p4
2
p’:A pZO
1
1
LA 2 |p,

Using the same two-element mesh as in Example 4, and so
with the same element and global matrices, but with the

right-hand side vector

(8.61)

S
o))
i)
o=

and with p, = p, =0, the pressures can be obtained:
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1+2(b/a)? 1+1(b/a)’
plz—lfaZM Aa, p3:_lfa2M_

> - ~—Aa (8.62)
2 1+ (b/a) 2 1+3(b/a)

which approaches the exact solution as b/a — 0; the average pressure along the left-hand
edge is, though, the exact solution p(0,y)=—fa’/2. The 2™ and 4™ equations yield different
values for the right-hand edge flux, but their average is the exact solution, fa + A4.

The exact gradient Vp is linear: (fx + A)e,. The FE solution is constant within each element,

Element 1: Vp =

- — 1+2(b/a)’
PP, Ps pze}=|:lfa $(b/a) +A}ev

x+
a b 27 1+ 1(b/a)

Vp:pz_p3 ex+p3_p1 e,
Element 2: lal L(h/a)? 1 1 L(b/a)
: L1 1
27 1+ 1(b/ a) 27 b1+lb/a) |

The component of Vp normal to the edge common to both elements can be obtained by taking
the dot product of these gradients with the normal vector n = (be, —ae )/ va® +b* , leading

to

1 1+2(b/a)
Element 1:  Vp-n= b lfa 5 (b/a) +A}

Ja b2 |27 141 /ay’

Element 2: Vp-n=

b 1 a§+g(b/a)2 +A}

NS 2 1+1(b/a)’

showing that the normal component is not continuous across the element boundary, for any
value of b/a. The exact solution at the centre of the square is Vp-n = b[% fa+ A]/ Na® +b* .

Suppose now that one has a long mesh of 2N triangles, with each “box” of equal height and
width /, equal to b and a/ N respectively, as illustrated.
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Z=b$ 1|2 j N

With this mesh, the FE solution converges to the exact solution as NV increases. For example,
with N =1 (the example considered above), the FE solution at x =0 is —0.444 fa’ —aA

(upper node) and —0.556 fa’ —aAd (lower node); for N =4, the solution is —0.496 fa* —aA

(upper node) and —0.504 fa* —aA (lower node); again, the average is the exact solution.

Non-constant f

Consider the case of varying f, in particular the problem with f = x, subject to the same

boundary conditions (8.59), which has the exact solution
1 3 3 ' 1 2
p(x,y)zE(x —-a )—A(a—x), p(x,y):Ex +A4 (8.63)

In this problem one needs to evaluate

2 1 1
3
jﬂvjdsz—ijde=—injNideS=% x| 1|=x,[2]-x1 (8.64)
E E =l E
1 1 2

Using the same two-element mesh as in Example 4, the right hand side vector becomes

3 1 0

2| 3 0 1
__aby3| b Y bop (8.65)

24 (1] 271 24,0

5 0 1

With p, = p, =0, one obtains:
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@ 143 (b/a)’ @ 1+1(b/a)’
p=—— 5 da py=——"— -
6 1+1(b/a) 6 1+1(b/a)

(8.66)

The average value of p along the left-hand edge is the exact solution p(0,y)=-a’/6. The

2" and 4™ equations yield different values for the right-hand edge flux, but their average is the

exact solution, a’>/2+ 4.

Again, it can be shown that the component of Vp normal to the edge common to both

elements is not continuous across that boundary.

Finally, consider the problem with f(x,y) = 2(x2 + yz) subject to
p(0,)=0, pay)=a’y’, px0=0, p(x,b)=b’x>

which has the exact solution

Py =3y, Loyt P_se,
ox oy

This problem involves the evaluation of the integrals

lﬁvjds = 2[(x? +y* N dS = —2£[(§3:xizv,}2 +[gyiNij2}deS

E i=1

(8.67)

(8.68)

(8.69)

The problem was solved for a =b =2, with the square region

divided into N right-sided triangles of equal size. The pressure at

the mid-point is shown in the table below for different mesh

refinements (the 200 element mesh is shown).

N p(L1)
8 0.83333
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32 0.95313
72 0.97863
128 0.98787
200 0.99220
Exact 1.00000

8.4 Solution using Nonconforming Triangular Element

8.4.1 Example 6: Laplace’s Eqn.

Consider again Example 4, Laplace’s equation with the boundary conditions (8.51). With the

non-conforming element, because of the different Jacobian, (8.52) now reads

8A. 23: », j T(VNi YN Yndé = | (2—pa)dC (8.70)
=l p=0£=0 con

Again, the integrand is a constant for any given element and is given by (8.53), only with the
X;,»; now being the non-conforming (mid-side) nodal coordinates and A is replaced by A .

Using the two elements shown, with I 1 Oj;jd nd& =1/2, the local element matrices are
=0 Je=

p=0 b —b 0
p
(Oab) ; (aab) I<elem1 =i _b2 aZ +b2 _a2 ,
1 2 2
0 -a a
24 (8.71)
’ ' 2 0 —
p'=0 p,p2 P lep, p'=0 ) a a
1 KelemZ :_b 0 b2 _b2
3 —a®> -b> a’+b’
(0,0) P (a0)
p=1 and the assembled global matrix is
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a’ 0 —a’ 0 0
5 0 b? -b? 0 0
K=—|-4? b* 2a* +2b* -b* a’
ab 5 5
0 0 -b b 0
i 0 0 —a’ 0 a’ i

The natural boundary condition leads to the right hand side vector

1 0
0 0
f=-al0 +a8_p 0
ol Plen| g
_O_ _1_

Applying the essential boundary condition, p =0 then leads to the solution

p, =-b, p, = p, = p, =—b/2. The final equation then gives (Gp/ay) I.

(xb)

The gradient is (the subscripts here are local node numbers)

Element 1: Vp:pl_pzer+p2_p3e =e
al2 b/2 77

Element2: Vp=23—F2 e, + PP =e,
al? b/2

Again, in this simple example, the gradient is continuous across the element boundary.

8.4.2 Example 7: Poisson’s Eqn.

Consider again Poisson’s equation over the rectangular region 0 <x <a, 0< y <b.
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Constant f

Consider again the problem with constant f considered in §8.3.2, Example 5. Using the same
two-element mesh as in Example 6, shown here, and so with the same element and global

, matrices, but with the right-hand side vector

p'=0
0,b) Ps (a,b)
1 1 0 0
1 1 0
) f:—f@ 2—pd0|+62 o], (8.74)
"—Ap.p2 3 1¢p, p=0 611 0 Ox |4 1
p - p2 4 2 1 p4 1 0
3
(0,0) P (a,0)
p'=0

and using p, =0, leads to the exact pressure at node 2. The FE solution is (compared with

the exact solution)

» -3 fa’-L M -1 4a P —2fa* -1 Aa
_1 —L 2
FE: | P2 | = S fa2 lAa ,  Exact: Pa|_ ) f(12 lAa (8.75)
Ds -3 fa” —5A4a Ps —sfa” —5 Aa
Ds -3 fa’-L -1 4a Ps —2fa® -1 Aa

Using (the inexact) p,, the 4™ equation yields the exact solution for the flux at node 4,
fa+A.

The exact gradient Vp is linear: (fc+ 4)e,. The FE solution is constant within each element

(the subscripts here are local node numbers)

P — P, Py, —Ds 5
Element 1: Vp = e + e =|—fa+Ale +|+—1ble
P=Tgn ST e T AT AR e
DPs— P> P — Ps I ] 1]
Element 2: Vp = e + e =|—fa+Ale_ +|——fble
PEan ST ST e P
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The component of Vp normal to the edge common to both elements can be obtained by taking

the dot product of these gradients with the normal vector n = (be, —ae )/ va® +b* , leading

to

Element 1: Vp-n= b %fa + A

Nar+b* L J

Element 2: Vp-n=

g -
BN
Na® +b* L3 J
showing that the normal component is not continuous across the element boundary, for any
value of b/a. The exact solution at the centre of the square is Vp-n = b[% fa+ A]/ Na® +b*

which is the average of the two FE values.

The solution converges to the exact solution as the mesh is made finer. For example, the FE
solution for the centre of the region is —0.3750fa* —1 Aa. With the above two-element

mesh, the FE solution is —0.4167 fu> =1 4a. With the 6-element mesh shown below it is
—0.3796 fa’ —+1 Aa (atnode 7). The solution is exact at nodes 4, 6, 8 and 10.

11

The full solution for this mesh is
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FE:

P =Py
Dy =Dy
P3 = Pis

C s g s ]
_ﬁfa 12ﬂ7 ﬁAa
41 2 1421
—mfa 12 2Aa
2 2
—qsfa” —5 fb7 —5Aa
—1fa’ - Aa
2
~ i fa’ =} da
2
—2fa” -3 4a

_ 41 2_1
108fa 2Aa
2
—xfa”—14a

_ 17 2_1
1osfa sAa
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, Exact:

P =Dy
P, = P
D3 = Di3

—3 fa* -1 Aa
— D fa* —1 4a
—1fa’ - Aa
—2fa*—24a
—2fa’ -2 4a
—3fa* -1 4a
—2fa’ -1 4a
0 - La




8.5 Appendix to Chapter 8

8.5.1 Green’s Identity for two dimensional integrals

Consider the weighted residual integral equation

”(v-vp)a)dszﬂ(w%+wg;—f]dszo (8A.1)

Consider the first term and write it as

Yaf X2 aZp
[l o Sdx ly =0 (8A.2)

PR

Here, y,,y, are the minimum and maximum values of y in the domain S and x,,x, are the

minimum and maximum values of x for the strip of height dy as it moves from y, to y,, as

shown in the figure below.

=

\
C, / C, x

Integrating by parts with respect to x leads to

AR
d.
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N

T op] ® dp
o] oo 2as

i ep, o H[ ], e
i(!wWX}y—yfl[_w&c— ]dy j[ axad

(8A.3)

The first term can be re-written in terms of normals in the x and y directions, as indicated in

the figure:

dy =cos@dC = (n-e )dC = n dC

where n_ is the component of the outward normal n in the x direction, so that

Um—d]d Jo2c,- foln.c.- [ Las

Ox Ox
_ja) ndC ﬂ a—pdS

Oox Ox

where C is the complete boundary, and C,,C, are as shown in the figure.

Similarly, the second term, involving y, can be expressed as

[o 8—ds apn dC - jj a—pdS
s oy ¢ o7 dy oy

Combining both parts leads to

2 2
ja{a—f+a deS:ja)(a—pn
s L Ox oy w \Ox

This can be written in vector notation:

dw op. 8a)8p
jd -U( ox 6x oy 6y]dS
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—_—

S

(V-Vp)wdS

At— at—,

Q) 8_pex+8_pe ~ndC—” a—pev+a—pe .
Ox oy J\ox * oy 7

(Vp-n)odC - [[(Vp-Vaolis
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ow

a_x x

ow
Oy

e, HdS
(8A.8)



228



