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3 NonStandard Galerkin FEM 
 

The standard Galerkin FEM as described in chapter 2 is a powerful tool for the numerical 

solution of a wide variety of problems.  However, there are certain problems which cannot be 

solved with adequate accuracy using the standard GFEM, for example the analysis of nearly-

incompressible materials or convection/diffusion with large Reynolds numbers; new variants 

of the standard FEM have been proposed to deal with problems of this type.  Other types of 

GFEM have been proposed as attractive alternatives to the standard strategies.  As an 

introduction to these variants of the FEM, below are discussed briefly the Penalty Method, 

some Mixed Methods and a Non-Mixed Conservative Method. These methods are 

considered “advanced” and do not need to be studied on a first reading. 

 

3.1 The Penalty Method 
 

The Penalty Method involves a very simple idea – essential boundary conditions do not have 

to be strongly enforced, but can be imposed weakly. 

 
It has been seen that to apply an essential boundary condition, to node 1 say, 11 pp  , one can 

alter the FE system as follows: 
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(3.1) 

 

This is the strong method of applying the boundary condition, building it into the system.  An 

alternative method is to impose it weakly, as follows: 
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Here, the term(s) involving   is called a penalty term; the penalty   must be large enough to 

drive 1p  to 1p , but not so large as to cause numerical problems. 

 

The method does not hold much of an advantage over the standard FEM, but it is worth 

studying because it forms the basis of more powerful Galerkin FEMs, the Internal Penalty 

(IP) method and the Discontinuous Galerkin FEM.  In these latter methods, the trial 

polynomials p over each element may be discontinuous at common nodes – they are forced to 

be continuous by penalty. 

 

More formally, consider the following problem with non-homogeneous essential boundary 

conditions: 
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The weak formulation including the penalty term is 
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For a mesh of 1n  linear elements of equal length L, the two integrals lead to the standard 

global system 
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The two boundary terms are treated as follows (this formulation relies on the fact that the 

shape functions take the values 0 or 1 at a boundary node): 
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leading to the final system 
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Taking now LC / , where C is a constant, it can be seen that 
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and sufficient accuracy is obtained by choosing C to be sufficiently large. 

 

3.1.1 Symmetric Systems 

 

The system can be made symmetric by including an extra boundary term (it can be included 
because 0p  at the boundary): 
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This results in the final system {▲Problem 1} 
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For example, taking xxf )(  (in which case the exact solution is 6/)1( 2xxpp  ), the f 

vector is 
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The value of p at the right hand side, for 1p  and 5 elements, is then as shown in the table 

below (convergence at the left hand end is much better for a given C). 

 

C )1(p  

1 0.009333333 

10 0.819878788 

100 0.980382838 

1000 0.998020646 

10000 0.999801886 

 

3.1.2 Natural Boundary Conditions 

 

Natural boundary conditions can be treated as in the standard FEM.  For example, consider 

next the following problem: 
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[exact solution:   )0()1()( 2
2
1 pxApAxxp  ] 

 

In this case one arrives at the system 
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3.2 The Mixed Method 
 

It often happens that the most important variable to be solved for is not the independent 
variable p, but its derivative xpq  / .  It has been seen that, with the standard Galerkin 

FEM, the solution for q is of an order less accurate than the solution for p.  In mixed methods, 

equations are set up for the solution of p and q simultaneously (as with the cubic Hermite 

element).  Different interpolation schemes (weight functions) can be used for p and q, 

depending on the accuracy required.  In the most basic case, q is interpolated linearly between 

nodes whilst p is constant over an element (reversing the accuracy obtained with the standard 

FEM).  Obtaining a more accurate solution for the derivative takes some more computational 

effort than obtaining a sufficiently accurate p. 

 

3.2.1 The Standard Mixed Method  

 

The standard Mixed Method will be illustrated by solving the problem 
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(3.14) 

 

Solution I (standard Galerkin FEM) 

 

First, recall the standard FEM: one writes 
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Two elements, with 1L , give the exact pressures at the nodes as plotted below left, 
   TTpp 2/1021  .  The system of equations to solve is )1()1(  NN  for N elements, 

but a little additional work needs to be done to evaluate the derivative q.  For the two 
elements, the derivatives are Lppxpq ii /)(/ 1   , so 

 

element 1:  
2

1
q  

element 2:  
2

1
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Figure 3.1:  Standard GFEM solution to Eqn. 3.14 

 

Solution II (Standard Mixed FEM) 

 

In the (standard) Mixed Method, one can take q to vary linearly over an element and p to be 

constant over an element, and replace the second order Eqn. 3.14 by the two separate first 

order equations: 
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This allows one to solve for p and q simultaneously.  Further, the first of these equations, the 

conservation equation, so called because it often arises in practical problems as an expression 

of conservation of some property such as mass, will now hold over an element, and this is 

often important from a physical point of view – it will be noted that, in the standard FEM with 

linear elements, q is a constant and its derivative is zero; thus this conservation condition is 

satisfied using the standard FEM only in the special case that the governing equation is 
homogeneous, i.e. 0/ 22  xp . 

 
The equations are now discretised in the usual way, with 1 1i i i iq N q N q   , Fig. 3.2. 

 

 
Figure 3.2:  Element with p constant, q varying linearly 

 

The equations on the left here have a constant weight function z (=1), equivalent to a finite 

difference scheme, those on the right have the standard linear shape/weight functions: 
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(3.17) 

 

Using a single element then gives 
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This is the exact solution for q (since it is linear).  Note that the coefficient matrix is 
symmetric.  With two elements, one arrives at {▲Problem 2} 3/121  pp  and with four 

elements one obtains a better solution for the p:  Tp 2083.04583.04583.02083.0 . 

 

 

Figure 3.3:  Standard Mixed Method solution to Eqn. 3.14 (2 & 4 elements) 
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Consider now a problem with a cubic solution: 
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[exact solution: 3
6
1

3
52 xx  ] 

 

Using the mixed method with two elements leads to {▲Problem 3} 
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Figure 3.4: Standard Mixed Method solution to Eqn. 3.20 

 

Note that the FE solution here ensures that q is continuous across element boundaries. 
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p’s and q’s at the same node – otherwise the resulting coefficient matrix will be singular, even 

after application of the boundary conditions. 

 
One cannot circumvent this by having the unknown p ’s at two interior nodes, i.e. not at the 

end-points, since then there will be more unknowns than equations. 

 

3.3 Mixed Finite Volume / Covolume Methods 
 

Control Volume methods are widely used in the numerical solution of flow problems.  These 

types of problem have traditionally been solved using the Finite Difference method, but new 

FEM methods, such as the one described here, are now also being used. 

 

Here problem (3.14) is re-visited using a so-called Control Volume Mixed Finite Element 
Method1. Shown in Fig. 3.5 are three “control volumes” iQ , 2/1iQ  and 1iQ .  One can 

consider iQ  and 1iQ  to be “elements” of a primary mesh/grid.  The functions p and q are 

interpolated over these elements.  A secondary or dual grid consists of the overlapping 
volumes 2/1iQ , etc. 

 

 
Figure 3.5: Dual grid and Control Volumes 

 

First, consider the equation 
x

p
q




 ; integrating over the control volume 2/1iQ  gives 

                                                 
1 ref: Cai Z, Jones JE, McCormick SF, Russell TF, “control-volume mixed finite element methods”, 

Computational Geosciences, 1997;1:289-315 
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(3.21) 

 
Next consider the conservation equation 1/  xq : as with the standard mixed method, 

integrating over the elements iQ   and 1iQ  gives 
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For these two elements under consideration, integrating the equation xpq  /  over the two 

half-sized control volumes at either end, which involve pressure values at the boundaries, give 

rise to 
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The (symmetric) system of equations for two elements is then 
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With 1 ii LL  these are (compare with the slightly different system of equations resulting 

from the standard mixed method, Eqn 3.20) 
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which is similar to the solution from the standard mixed method. 

 

 

3.4 Non-Mixed Method for Conservative Elements 
 
As mentioned, in the standard FEM the conservation relation )(xfq   (for example 

1)( xf  in problem 1 above) does not usually hold over an element.  The mixed methods 

discussed above ensure that this relation does hold, but the variable p is not evaluated 

accurately. 

 

In the method outlined here, both p and q are evaluated accurately.  Further, control volumes 

are not used, so all calculations are carried out for each element – there is only one grid. 

 
First2, suppose that hp , the FE approximation to p, is evaluated using any method, for 

example the standard GFEM.  One can then take a Taylor’s series of hq  about the centre of 

the element cx : 

 

                                                 
2 ref: Chou S-H, Tang S, “Conservative p1 conforming and non-conforming galerkin FEMs: effective flux 

evaluation via a nonmixed method approach”, SIAM J. Numeric. Anal., 2000;38(2):660-680 
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In other words, q is evaluated by taking the derivative of p, as in the standard GFEM, and then 

by adding a correction term to make it linear over the element.  The accuracy of this depends 
on how accurate )( cxf  is evaluated, and on how accurate is )(/)( ch xfxxq   in any 

element.  There are a number of different ways of evaluating )( cxf , e.g. taking the average of 

f over an element or using various interpolation schemes (see below).  If q is linear, so that 
0q , etc., and )( cxq  is evaluated exactly, then )(xqh  thus evaluated will be exact. 

 

Consider the following problem: 
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[exact solution: 
3

4

49)(

92)(

xxq

xxxp




 ] 

 

First evaluate p using the standard GFEM.  Note that in practical codes, it is often convenient 
to be able to change the term 212x  easily.  Thus, instead of inputting 212)( xxf   directly and 

evaluating the weighted integral dxNx
i

i

x

x j
1 212 , one can be more general and interpolate )(xf  

linearly as in 211)( NfNfxf ii  .  This doesn’t result in much loss of accuracy, since p is 

only accurate to this order in any case.  Thus, assuming that )(xf  is known at the nodes (the  

s'if ), 
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(3.28) 

 

In the formula 

 

)()()( cc
h

h xfxx
x

p
xq 




 ,    (3.29) 

 
)( cxf  can be evaluated from the linear interpolation of )(xf , i.e. simply the average of the 

nodal values, 2/)( 1 ii ff .  One could also use the more specific expression 212)( cc xxf  . 

 

Results are shown below for 3 elements.  Note that the FE solution for the derivative q is 

discontinuous (very slightly so here) across the element boundaries. 

 

 
Figure 3.6: Non-Mixed Method solution to Eqn. 3.27 

 

 

3.5 Problems 
 
1. For the Penalty Method, show how the boundary term   px /  leads to the final 

symmetric system (3.10).  What is the accuracy obtained at the boundary, that is, what 
are the values of npp ,1  in this case, in terms of LC  , L, p  and if ?  

2. For the standard mixed method, use (3.18) to write out the system of equations for the 
two-element mesh for the problem (3.16), the solution of which is 3/121  pp . 

3. Derive the system of equations (3.20). 
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